105 research outputs found

    Protective Effect of Hepatitis B Vaccine Combined with Two-Dose Hepatitis B Immunoglobulin on Infants Born to HBsAg-Positive Mothers

    Get PDF
    Despite the use of hepatitis B (HB) vaccine and hepatitis B immunoglobulin (HBIG), a portion of infants are still non- or low-responders, or even immunoprophylaxis failure. We aimed to determine the immune response in the infants from the mothers being positive for hepatitis B surface antigen (HBsAg), by which the infants received three doses of HB vaccine in combination with two-dose 200 IU HBIG injections.In this retrospective study, 621 infants from HBsAg-positive mothers in Beijing YouAn Hospital between January 2008 and December 2009 were included. All the infants were given three doses of 10 µg HB vaccine (at 0, 1 and 6 months of age) and two-dose of 200 IU HBIG (at birth and in 2 weeks of age). Serum HBsAg and antibody to HBsAg (anti-HBs) in all the infants were determined at 7 months of age.Of the 621 infants, 2.9% were immunoprophylaxis failure (positive for HBsAg), 1.4% were non-responders (anti-HBs undetectable), 95.7% were responders. The 594 responders could be categorized into three subsets, 22 were 10 to 99 IU/L for anti-HBs levels, 191 were 100 to 999 IU/L, and 381 were ≥1000 IU/L. The immunoprophylaxis failure rate was at 0% and 5.2% for the infants of HBeAg-negative and HBeAg-positive mothers(P<0.001). Infants from mothers with detectable HBV DNA had higher incidence of immunoprophylaxis failure than those of mothers without detectable HBV DNA (P = 0.002). The factors including gender, birth weight, gestation weeks, the rates of maternal HBeAg-positive, and detectable HBV DNA did not contribute to the no response to HB vaccination.Through vaccination by three doses of HB and two-dose of HBIG, majority of the infants (95.7%) achieved a protective level of anti-HBs at 7 months of age. Maternal HBeAg-positive and HBV DNA detectable were associated with the immunoprophylaxis failure, but not contribute to the non- or low-response to HB vaccination

    Genetically Regulated Bilirubin and Risk of Non-alcoholic Fatty Liver Disease: A Mendelian Randomization Study

    Get PDF
    Mildly elevated serum bilirubin levels were reported to be associated with decreased risk of non-alcoholic fatty liver disease (NAFLD). Whether this is a causal relationship remains unclear. We tested the hypothesis that genetically elevated plasma bilirubin levels are causally related to reduce risk of NAFLD. A total of 403 eligible participants were enrolled. NAFLD was determined by liver ultrasonography. The uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) gene variants (UGT1A1*6 and UGT1A1*28) were genotyped through sequencing. We applied a Mendelian randomization approach to assess the effects of genetically elevated bilirubin levels on NAFLD. NAFLD was diagnosed in 19% of participants in our study (NAFLD = 76; Non-NAFLD = 327). The variants of UGT1A1*28 and UGT1A1*6 were strongly associated with increased total bilirubin (TB), direct bilirubin (DB), and indirect bilirubin (IB) levels (each P &lt; 0.001). These two common variants explain 12.7% (TB), 11.4% (IB), and 10.2% (DB) of the variance in bilirubin levels, respectively. In logistic regression model, after multifactorial adjustment for sex, age, aminotransferase (ALT), white blood count (WBC), and body mass index (BMI), variant UGT1A1*28 (OR = 1.39; 95%CI: 0.614–3.170; P = 0.43) and UGT1A1*6 (OR = 1.64, 95%CI, 0.78–3.44; P = 0.19) genotypes were not significantly associated with the risk of NAFLD. Moreover, the plasma bilirubin level (TB, IB, and DB) were not significantly associated with the risk of NAFLD (P &gt; 0.30). A Mendelian randomization analysis of the UGT1A1 variants suggests that bilirubin is unlikely causally related with the risk of NAFLD

    M2-like macrophages in the fibrotic liver protect mice against lethal insults through conferring apoptosis resistance to hepatocytes.

    Get PDF
    Acute injury in the setting of liver fibrosis is an interesting and still unsettled issue. Most recently, several prominent studies have indicated the favourable effects of liver fibrosis against acute insults. Nevertheless, the underlying mechanisms governing this hepatoprotection remain obscure. In the present study, we hypothesized that macrophages and their M1/M2 activation critically involve in the hepatoprotection conferred by liver fibrosis. Our findings demonstrated that liver fibrosis manifested a beneficial role for host survival and apoptosis resistance. Hepatoprotection in the fibrotic liver was tightly related to innate immune tolerance. Macrophages undertook crucial but divergent roles in homeostasis and fibrosis: depleting macrophages in control mice protected from acute insult; conversely, depleting macrophages in fibrotic liver weakened the hepatoprotection and gave rise to exacerbated liver injury upon insult. The contradictory effects of macrophages can be ascribed, to a great extent, to the heterogeneity in macrophage activation. Macrophages in fibrotic mice exhibited M2-preponderant activation, which was not the case in acutely injured liver. Adoptive transfer of M2-like macrophages conferred control mice conspicuous protection against insult. In vitro, M2-polarized macrophages protected hepatocytes against apoptosis. Together, M2-like macrophages in fibrotic liver exert the protective effects against lethal insults through conferring apoptosis resistance to hepatocytes

    Vitamin D Signaling through Induction of Paneth Cell Defensins Maintains Gut Microbiota and Improves Metabolic Disorders and Hepatic Steatosis in Animal Models.

    Get PDF
    Metabolic syndrome (MetS), characterized as obesity, insulin resistance, and non-alcoholic fatty liver diseases (NAFLD), is associated with vitamin D insufficiency/deficiency in epidemiological studies, while the underlying mechanism is poorly addressed. On the other hand, disorder of gut microbiota, namely dysbiosis, is known to cause MetS and NAFLD. It is also known that systemic inflammation blocks insulin signaling pathways, leading to insulin resistance and glucose intolerance, which are the driving force for hepatic steatosis. Vitamin D receptor (VDR) is highly expressed in the ileum of the small intestine, which prompted us to test a hypothesis that vitamin D signaling may determine the enterotype of gut microbiota through regulating the intestinal interface. Here, we demonstrate that high-fat-diet feeding (HFD) is necessary but not sufficient, while additional vitamin D deficiency (VDD) as a second hit is needed, to induce robust insulin resistance and fatty liver. Under the two hits (HFD+VDD), the Paneth cell-specific alpha-defensins including α-defensin 5 (DEFA5), MMP7 which activates the pro-defensins, as well as tight junction genes, and MUC2 are all suppressed in the ileum, resulting in mucosal collapse, increased gut permeability, dysbiosis, endotoxemia, systemic inflammation which underlie insulin resistance and hepatic steatosis. Moreover, under the vitamin D deficient high fat feeding (HFD+VDD), Helicobacter hepaticus, a known murine hepatic-pathogen, is substantially amplified in the ileum, while Akkermansia muciniphila, a beneficial symbiotic, is diminished. Likewise, the VD receptor (VDR) knockout mice exhibit similar phenotypes, showing down regulation of alpha-defensins and MMP7 in the ileum, increased Helicobacter hepaticus and suppressed Akkermansia muciniphila. Remarkably, oral administration of DEFA5 restored eubiosys, showing suppression of Helicobacter hepaticus and increase of Akkermansia muciniphila in association with resolving metabolic disorders and fatty liver in the HFD+VDD mice. An in vitro analysis showed that DEFA5 peptide could directly suppress Helicobacter hepaticus. Thus, the results of this study reveal critical roles of a vitamin D/VDR axis in optimal expression of defensins and tight junction genes in support of intestinal integrity and eubiosis to suppress NAFLD and metabolic disorders

    Transplanted adult human hepatic stem/progenitor cells prevent histogenesis of advanced hepatic fibrosis in mice induced by carbon tetrachloride

    Get PDF
    Transplantation of adult human hepatic stem/progenitor cells (hHSPCs) has been considered as an alternative therapy, replacing donor liver transplantation to treat liver cirrhosis. This study assessed the antifibrotic effects of hHSPCs in mice with fibrosis induced by carbon tetrachloride (CCl4) and examined the actions of hHSPCs on the fibrogenic activity of human hepatic stellate cells (HSCs) in a coculture system. Isolated hHSPCs expressed stem/progenitor cell phenotypic markers. Mice were given CCl4 (twice weekly for 7 weeks) and hHSPC transplantation weekly. CCl4 induced advanced fibrosis (bridging fibrosis and cirrhosis) in mice, which was prevented by hHSPC transplantation. The liver of hHSPC-transplanted mice showed only occasional short septa and focal parenchymal fibrosis, and a 50% reduction in hepatic collagen, assessed by Sirius red stain histomorphometry. Moreover, the proteins for α-smooth muscle actin (α-SMA) and collagen I were decreased. While α-SMA, collagen α1(I), and tissue inhibitor of metalloproproteinase-1 mRNAs were decreased, matrix metalloproteinase (MMP)-1 mRNA was increased, consistent with decreased fibrogenesis. MMP-2 and transforming growth factor-β were not affected. Alanine aminotransferase and aspartate aminotransferase were lower, suggesting improvement of liver function/damage. In coculture, hHSPCs elicited changes of α-SMA and fibrogenic molecules in HSCs similar to those observed in vivo, providing evidence for a functional link between hHSPCs and HSCs. A decreased HSC proliferation was noted. Thus, transplantation of hHSPCs prevents histogenesis of advanced liver fibrosis caused by CCl4. hHSPCs mediate downregulation of HSC activation coincident with modulation of fibrogenic molecule expression, leading to suppression of fibrogenesis both in vivo and in vitro

    Programmed cell death and lipid metabolism of macrophages in NAFLD

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) has now become the leading chronic liver disease worldwide with lifestyle changes. This may lead to NAFLD becoming the leading cause of end-stage liver disease in the future. To date, there are still no effective therapeutic drugs for NAFLD. An in-depth exploration of the pathogenesis of NAFLD can help to provide a basis for new therapeutic agents or strategies. As the most important immune cells of the liver, macrophages play an important role in the occurrence and development of liver inflammation and are expected to become effective targets for NAFLD treatment. Programmed cell death (PCD) of macrophages plays a regulatory role in phenotypic transformation, and there is also a certain connection between different types of PCD. However, how PCD regulates macrophage polarization has still not been systematically elucidated. Based on the role of lipid metabolic reprogramming in macrophage polarization, PCD may alter the phenotype by regulating lipid metabolism. We reviewed the effects of macrophages on inflammation in NAFLD and changes in their lipid metabolism, as well as the relationship between different types of PCD and lipid metabolism in macrophages. Furthermore, interactions between different types of PCD and potential therapeutic agents targeting of macrophages PCD are also explored

    The Hepatitis B Surface Antigen Binding Protein: An Immunoglobulin G Constant Region-Like Protein That Interacts With HBV Envelop Proteins and Mediates HBV Entry

    Get PDF
    Hepatitis B virus (HBV) infection is a leading cause of liver cirrhosis, liver cancer, and liver failure, affecting 350 million people worldwide. Currently available anti-HBV drugs include (PEGylated-) interferon-α and nucleos(t)ide analogs, which can cause significant side effects and drug-resistance in many cases of long-term treatment. The lack of a reliable and robust in vitro infection system is a major barrier for understanding the HBV life cycle and discovering novel therapeutic targets. In the present study, we demonstrate that overexpression of the hepatitis B surface antigen binding protein (SBP) in HepG2 cells (HepG2-SBP) resulted in their susceptibility to HBV infection. HepG2-SBP cells supported the uptake of the viral surface protein (HBsAg-preS), HBV-pseudotyped virus, and live HBV in patient sera. Moreover, SBP-mediated HBsAg-preS uptake, and HBV pseudotyped virus infections were efficiently blocked by preS1- and SBP-specific antibodies. These observations suggest that SBP is involved in HBV entry and that HepG2-SBP cells can serve as a cellular model to study the post-binding steps of HBV infection

    Transplanted adult human hepatic stem/progenitor cells prevent histogenesis of advanced hepatic fibrosis in mice induced by carbon tetrachloride

    Get PDF
    Transplantation of adult human hepatic stem/progenitor cells (hHSPCs) has been considered as an alternative therapy, replacing donor liver transplantation to treat liver cirrhosis. This study assessed the antifibrotic effects of hHSPCs in mice with fibrosis induced by carbon tetrachloride (CCI4) and examined the actions of hHSPCs on the fibrogenic activity of human hepatic stellate cells (HSCs) in a coculture system. Isolated hHSPCs expressed stem/progenitor cell phenotypic markers. Mice were given CCl4 (twice weekly for 7 weeks) and hHSPC transplantation weekly. CCl4 induced advanced fibrosis (bridging fibrosis and cirrhosis) in mice, which was prevented by hHSPC transplantation. The liver of hHSPC-transplanted mice showed only occasional short septa and focal parenchymal fibrosis, and a 50% reduction in hepatic collagen, assessed by Sirius red stain histomorphometry. Moreover, the proteins for a-smooth muscle actin (alpha-SMA) and collagen I were decreased. While alpha-SMA, collagen alpha 1(I), and tissue inhibitor of metalloproproteinase-1 mRNAs were decreased, matrix metalloproteinase (MMP)-1 mRNA was increased, consistent with decreased fibrogenesis. MMP-2 and transforming growth factor-beta were not affected. Alanine aminotransferase and aspartate aminotransferase were lower, suggesting improvement of liver function/damage. In coculture, hHSPCs elicited changes of alpha-SMA and fibrogenic molecules in HSCs similar to those observed in vivo, providing evidence for a functional link between hHSPCs and HSCs. A decreased HSC proliferation was noted. Thus, transplantation of hHSPCs prevents histogenesis of advanced liver fibrosis caused by CCl4. hHSPCs mediate down-regulation of HSC activation coincident with modulation of fibrogenic molecule expression, leading to suppression of fibrogenesis both in vivo and in vitro

    Serum HBsAg and HBcrAg is associated with inflammation in HBeAg-positive chronic hepatitis B patients

    Get PDF
    Backgrounds &amp; aimsLiver inflammation is the main risk factor for developing liver fibrosis, cirrhosis, and even hepatocellular carcinoma in chronic hepatitis B (CHB) patients. To replace biopsy, additional non-invasive biomarkers to diagnose and grade liver necroinflammation are urgently required in clinical practice.MethodNinety-four CHB patients, including 74 HBeAg-positive and 20 HBeAg-negative patients, were enrolled and started entecavir or adefovir therapy. Serum HBV RNA, HBV DNA, HBsAg, hepatitis B core-related antigen (HBcrAg), ALT and AST levels, as well as intrahepatic HBV DNA and cccDNA were measured at baseline and during treatment. Liver inflammation was assessed at baseline and month 60 by liver biopsy. Inflammation regression was defined as a ≥1-grade decrease according to the Scheuer scoring system.ResultsIn HBeAg-positive CHB patients, at baseline, serum HBsAg and HBcrAg levels negatively correlated with inflammation grade, while ALT and AST levels positively correlated with inflammation grade. AST plus HBsAg exhibited excellent diagnostic ability for significant inflammation with an AUROC of 0.896. After 60 months of antiviral treatment, almost all the patients’ liver inflammation ameliorated to G1, and no patients had inflammation progression.ConclusionBesides ALT and AST, serum HBsAg and HBcrAg correlated with inflammation grade in HBeAg-positive CHB patients before NAs treatment. Moreover, the combination of HBsAg and AST exhibited excellent diagnostic ability for significant inflammation
    • …
    corecore