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Non-alcoholic fatty liver disease (NAFLD) has now become the leading chronic

liver disease worldwide with lifestyle changes. This may lead to NAFLD becoming

the leading cause of end-stage liver disease in the future. To date, there are still no

effective therapeutic drugs for NAFLD. An in-depth exploration of the

pathogenesis of NAFLD can help to provide a basis for new therapeutic agents

or strategies. As themost important immune cells of the liver, macrophages play an

important role in the occurrence and development of liver inflammation and are

expected to become effective targets for NAFLD treatment. Programmed cell

death (PCD) of macrophages plays a regulatory role in phenotypic transformation,

and there is also a certain connection between different types of PCD. However,

how PCD regulates macrophage polarization has still not been systematically

elucidated. Based on the role of lipid metabolic reprogramming in macrophage

polarization, PCD may alter the phenotype by regulating lipid metabolism. We

reviewed the effects of macrophages on inflammation in NAFLD and changes in

their lipid metabolism, as well as the relationship between different types of PCD

and lipid metabolism in macrophages. Furthermore, interactions between different

types of PCD and potential therapeutic agents targeting of macrophages PCD are

also explored.

KEYWORDS
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1 Introduction

Non-alcoholic fatty liver disease (NAFLD) is currently the most common liver disease,

and affects approximately one-third of the world’s population (1). According to the severity

and the pathological phase, NAFLD can be divided into non-alcoholic fatty liver (NAFL),

non-alcoholic fat hepatitis (NASH), liver fibrosis and cirrhosis. Although NAFL has no

clinically significant, there is evidence suggests that approximately 25% of patients with

NAFL progress to NASH (2). The presence of NASH promotes the progression of liver

pathology and increases the incidence of adverse outcomes compared to NAFL. In recent
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years, the global proportion of NAFLD-associated hepatocellular

carcinoma (HCC) has increased year by year and may gradually

become the main cause of HCC (3). Therefore, it is important to find

effective therapeutic agents to block the pathological progression of

NAFLD, especially NASH. The transition from NAFL to NASH is the

result of a complex multifactorial effect, which involves a complex

liver cell population (both parenchymal and non-parenchymal cells)

as well as pathological signals from visceral fat and intestine. The

pathogenesis of NAFLD was considered to be the “two-hit

hypothesis” (4). Lipid accumulation in hepatocytes represents the

“first hit”, while other factors such as oxidative stress are referred to as

the “second hit”. However, recent studies have suggested that NAFLD

progression may be influenced by various factors such as

environment, metabolism, gut microbiota, and genetic factors

(5, 6). The simultaneous changes of insulin resistance, genetic and

epigenetic factors, mitochondrial dysfunction, endoplasmic reticulum

stress, microbiota, chronic low-grade inflammation, etc. led to the

progress of NAFLD, which was named “multiple parallel hits

hypothesis” (7).

The main sources of lipid deposition in the liver include adipose

tissue lipolysis, hepatic de novo lipogenesis (DNL), and diet, with the

former accounting for the majority (8). Excess fatty acids are taken up

and intracellularly transported in the liver by hepatocytes,

macrophages, and other liver cells. When excess free fatty acids

(FFAs) exceed the antioxidant capacity of the body, inflammation

occurs. These mechanisms have been well summarized in previous

reviews (9, 10). Macrophages are an important component of innate

immunity. Macrophages in the liver mainly include tissue-resident

Kupffer cells (KCs), monocyte-derived macrophages (MoMFs) and

subcapsular macrophages discovered in recent years (11).

Subcapsular macrophages play a major role in the defense against

infectious agents from the abdominal cavity and are not the topic of

this article. KCs are the most abundant tissue-resident macrophages

in the mammalian body, accounting for 80-90% of all tissue-resident

macrophages (12). KCs are mainly localized in the reticuloendothelial

system and sense risk factors from the intestine and adipose tissue as

well as multiple signals from the liver microenvironment. KCs

constitute the hepatic immune homeostasis and alert when the

balance is disturbed. When inflammation is induced, numerous

monocytes are recruited to the liver (13). This may contribute to

the chronic low-grade inflammation in NAFLD. Considering the

important impact of macrophages on hepatic inflammation and their

ability to process lipids, they play an important role in the

pathological progression of NAFLD. Programmed cell death (PCD)

of macrophages is closely associated with the development of

inflammation (14). This paper mainly focuses on the effects of lipid

metabolism and PCD on the phenotype of macrophages in NAFLD

and the relationship between them. The possibility of targeting PCD

of macrophages in the treatment of NAFLD has also been explored.
2 Effect of macrophages on the
inflammatory response in NAFLD

Inflammation is a major pathological factor in the progression of

NAFLD, and hepatocyte death is one of the crucial triggers of liver

inflammation (15). Macrophages play an important role in the
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inflammatory response in NAFLD due to their ability to clear

pathogens and recruit circulating inflammatory cells (2). Typically,

macrophages can be classified into two phenotypes, the classically

activated M1 type and the alternatively activated M2 type (Figure 1).

M1 macrophages are induced by lipopolysaccharide (LPS) and Th1

cytokines such as interferon-g (IFN-g) and granulocyte-macrophage

colony-stimulating factor (GM-CSF) alone or in combination to

secrete pro-inflammatory factors such as interleukin 1b (IL-1b), IL-
6 and tumor necrosis factor-a (TNF-a), while M2 macrophages are

induced by Th2 cytokines such as IL-4 and IL-13 to secrete anti-

inflammatory factors such as IL-10 and transforming growth factor-b
(TGF-b) (16). The balance of M1 and M2 macrophages is an

important determinant of the pathological changes in the liver

under inflammatory conditions. However, the M1 and M2

classification cannot describe macrophages accurately due to the

heterogeneity and functional diversity of macrophages. More

specific markers of different macrophage phenotypes are needed.

KCs are liver-resident macrophages and account for 15% of all

liver cells (17). It is now clear that KCs originate from yolk-sac-

derived erythro-myeloid progenitors expressing colony stimulating

factor 1 receptor (CSF1R) (18). In the context of NAFLD, KCs are the

major source of cytokines and chemokines (19). For example, KCs

promote steatosis and insulin resistance by secreting IL-1b to

downregulate peroxisome proliferative activated receptor a
(PPARa) expression in hepatocytes (20). A previous study has

demonstrated that consumption of KCs attenuates high fat or high

sucrose diet-induced NASH in rats (21). On the one hand, portal

vein-derived LPS can bind to toll-like receptor 4 (TLR4) on the

surface of KCs to induce their polarization toward M1 pro-

inflammatory phenotype and enhance pro-inflammatory cytokines

including monocyte chemoattractant protein-1 (MCP1, also known

as C-C motif chemokine ligand 2, CCL2), TNF-a and IL-6 expression

via yes-associated Protein (YAP) (22). On the other hand, KCs can

also promote hepatocyte apoptosis and inflammatory progression by

producing TNF, TNF-related apoptosis-inducing ligand (TRAIL) and

factor associated suicide (Fas) ligand through phagocytosis of

apoptotic bodies (23). In addition, lipotoxic hepatocytes can release

mitochondrial DNA (mtDNA) to induce nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-kB) dependent inflammation

by binding to transmembrane protein 173 (TMEM173 or STING) on

the surface of KCs (24), while KCs themselves can activate the NOD-

like receptor thermal protein domain associated protein 3 (NLRP3)

inflammasome via mtDNA released from mitochondria thereby

promoting the progression of NASH (25).

MoMFs are recruited to the liver under inflammatory conditions

and transformed to different phenotypes in response to stimulation by

complex cytokines. Recent studies have confirmed that lipotoxic

hepatocytes can secrete extracellular vesicles rich in MicroRNA

192-5p (26), C-X-C Motif Chemokine Ligand 10 (CXCL10) (27),

ceramide (28) to promote M1 polarization of MoMFs and secrete pro-

inflammatory cytokines. Meanwhile, extracellular vesicles can also

promote the recruitment of MoMFs through an integrin b1 (ITGb1)-
dependent pathway (29). Except for CXCL10, various chemokines

including CCL2 played important roles in the infiltration of MoMFs

and M1 polarization, while inhibition or knockdown of CXCL10 and

CCL2 showed inhibition of liver macrophage infiltration and

improvement of inflammation in the mouse model of NASH
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(30, 31). Lymphocyte antigen 6C (Ly6C) is a marker of mouse

monocytes, which divides circulating monocytes into two major

subpopulations, Ly6Chi and Ly6Clo (32). The Ly6Clo subgroup

shows anti-inflammatory properties, while the Ly6Chi subgroup

exhibits pro-inflammatory properties and constitutes the main

pathological mechanism of NASH progression. Ly6Chi MoMFs can

be converted to Ly6Clo MoMFs after the clearance of apoptotic

hepatocytes (33). A dual C-C Motif Chemokine Receptor 2

(CCR2)/CCR5 antagonist, cenicriviroc (CVC), demonstrated

improvement in NASH-related liver fibrosis and inhibition of

steatohepatitis progression in a completed phase II clinical trial

enrolling 289 patients with NASH (34). A study in a mouse model

of NASH showed that CVC inhibited Ly6Chi MoMFs infiltration and

fibrosis progression, but had no direct effect on macrophage

polarization (35).

Due to the immune tolerance characteristic of the liver, KCs are

mainly involved in maintaining inflammatory homeostasis, while

MoMFs play a major role in acute and chronic liver inflammation

(32). Under homeostatic conditions, the hepatic macrophage

population contains only a small amount of MoMFs. KCs could

directly inhibit the inflammatory response of MoMFs by secreting

miR-690-containing exosomes, whereas miR-690 of KCs showed low

expression during the progression of NASH (36), which might

promote the recruitment and pro-inflammatory transformation of

MoMFs. In addition, activated KCs can promote the recruitment of

Ly6Chi MoMFs by secreting CCL2 (31). KCs proliferate for self-

renewal in the liver, but the mechanism of renewal is impaired during

NASH. When KCs are depleted, some Ly6Chi MoMFs are even able to
Frontiers in Immunology 03
convert to KCs to replenish the hepatic KCs pool under specific

factors (37). However, compared with embryo-derived KCs,

monocyte-derived KCs do not effectively promote hepatic

triglyceride storage and exhibit pro-inflammatory properties in the

liver, thereby exacerbating liver injury in NASH (38).
3 Lipid metabolism in macrophages

Macrophages require a lot of energy to maintain their function in

inflammation. Metabolic reprogramming has an important role in

regulating the function of immune cells, and macrophages of

different phenotypes usually exhibit different metabolic profiles

(39). Macrophages possess lipid-processing function and

play an important role in lipid metabolism. Intracellular lipid

metabolism involves a series of complex enzymatic reactions

(Figure 2). FFAs taken up by fatty acid transport proteins (e.g.

CD36) and fatty acid binding proteins (FABPs) are transformed to

acyl-coenzyme A (acyl-CoA) by the action of acyl-CoA synthase

(ACS). Acyl-CoA can not only participate in the synthesis of

triglycerides, but also converted to acyl-carnitine by carnitine

palmitoyltransferase-1 (CPT1). Subsequently, acyl-carnitine is

transported into the mitochondria via carnitine-acylcarnitine

translocase (CACT) and CPT2 for fatty acid oxidation (FAO) and

increases the production of nicotinamide adenine dinucleotide

(NADH)/1,5-dihydroflavin adenine dinucleotide (FADH2) thereby

promoting oxidative phosphorylation (OXPHOS). The acetyl-CoA

produced during this process participates in the TCA cycle and
FIGURE 1

Phenotype and function of liver macrophages. KCs and monocyte-derived macrophages can be polarized by different factors into two distinct
phenotypes, classically activated M1 and alternatively activated M2. M2 macrophages can be further classified into multiple phenotypes. Overall, M1
exhibits pro-inflammatory properties and M2 exhibits anti-inflammatory properties. The balance between the two determines the direction of liver
inflammation. GM-CSF, granulocyte-macrophage colony-stimulating factor; IFN-g, interferon-g; IL, interleukin; LPS, lipopolysaccharide; MHC-II, major
histocompatibility complex class IITGF-b, transforming growth factor-b; TLR4, toll-like receptor 4; TNF-a, tumor necrosis factor-a.
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ultimately promotes the production of citrate. Glucose can be

converted to pyruvate through glycolysis and then also participate

in the TCA cycle through conversion to acetyl-CoA (40). Citrate can

be converted back to acetyl-CoA by the action of ATP-citrate lyase

(ACLY). Acetyl-CoA is not only involved in de novo lipogenesis

(DNL), but also in cholesterol synthesis. The excess fatty acids are

used for the synthesis of triglycerides and other complex lipids (41),

while cholesterol is transported out of the cell under the regulation of

ATP-binding cassette sub-family A member 1 (ABCA1) and ATP-

binding cassette sub-family G member 1 (ABCG1) (42).

In M1 macrophages, increased glycolysis not only provides ATP

more rapidly, but also promotes the TCA cycle and acetyl-CoA

production (43). Sterol regulatory element-binding proteins (SREBPs)

and fatty acid synthase (FAS), both key regulators of fatty acid

synthesis, not only promote lipid biosynthesis in macrophages, but

have also been shown to be critical for the induction of M1 polarization

of macrophages (44–46). Different from M1, M2 macrophages possess

an intact TCA cycle and enhanced mitochondrial OXPHOS, which

depends on fatty acid uptake and FAO (43). CPT1 is involved in the

production and mitochondrial transport of fatty acid-derived acyl-

carnitine. Inhibition of CPT1 blocks mitochondrial FAO and has been

shown to inhibit IL-4-mediated M2 polarization of macrophages (47).

Thus, classical LPS/IFN-g-activated pro-inflammatory M1

macrophages in vitro exhibit enhanced glucose uptake and anaerobic

glycolysis, whereas anti-inflammatory M2 macrophages induced by IL-

4/IL-13 exhibit enhanced FAO and OXPHOS (Figure 3). Lipid

metabolism in M1 macrophages favors lipid synthesis and

proinflammatory factor expression, whereas M2 macrophages receive
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their energy supply through FAO (48, 49). It has been shown that

inhibition of FAO inhibits M2 polarization in macrophages (50), while

LPS in combination with IFNg inhibits IL-4-inducedM2 repolarization

by suppressing OXPHOS in macrophages (51). Due to the high

plasticity, macrophages can be phenotypically “repolarized” or

“reprogrammed” when induced by the corresponding signals (16).

Thus, metabolic regulation may be central to the functional plasticity of

macrophages, and FAO plays an essential role in inflammatory and

metabolism-mediated phenotypic changes in immune cells.

4 Effect of lipid metabolic
reprogramming of macrophages
on NAFLD

The liver is an important organ of lipid metabolism. Based on the

close relationship between macrophage lipid metabolism and

inflammation, dysregulated lipid metabolism in NAFLD may promote

the progression of inflammation by affecting macrophage function.

Modulation of lipid metabolism may have potential therapeutic

implications for the progression of inflammation in NAFLD by

reshaping the M1/M2 balance. Therefore, it is necessary to further

clarify the changes in lipid metabolism of macrophages in NAFLD.

KCs express receptors such asMSR1, CD36, and TIM4, which recognize

and remove membrane lipid components of apoptotic cells and

circulating oxidized low-density lipoproteins (ox-LDL). Subsequently,

these lipids are degraded to FFAs and cholesterol by lysosomal acid lipase

(LAL), which is involved in HDL synthesis (52). This function of KCs is
FIGURE 2

Lipid metabolism in macrophages. FFAs are catabolized to acyl-CoA by the action of ACS and thus participate in triglyceride synthesis and FAO. FAO can
participate in the TCA cycle by producing acetyl-CoA and also promote OXPHOS by increasing NADH/FADH2 production. In addition, glucose can also
produce acetyl-CoA through glycolysis. The citrate generated by the TCA cycle is reconverted to acetyl-CoA in the cytoplasm by ACL, thus participating
in DNL and cholesterol synthesis. ABCA1, ATP-binding cassette sub-family A member 1; ABCG1, ATP-binding cassette sub-family G member 1; ACC,
acetyl-CoA carboxylase; ACLY, ATP-citrate lyase; ACS, acyl-CoA synthetase; CACT, carnitine-acylcarnitine translocase; CoA, coenzyme A; CPT1,
carnitine palmitoyl transferase 1; DNL, de novo lipogenesis; ETC, electron transport chain; FAO, fatty acid oxidation; FAS, fatty acid synthase; FFAs, free
fatty acids; Glut1, glucose transporterisoform 1; MUFA, monounsaturated fatty acid; OXPHOS, oxidative phosphorylation; PPP pathway, pentose
phosphate pathway; SCD, stearoyl-coenzyme A desaturase; TCA, tricarboxylic acid.
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highly conserved in several species (53), and their expression of genes

related to lipid metabolism are more abundant than in other tissue-

resident macrophages (54). Given the role of KCs in hepatic immune

homeostasis, they may maintain specific functions, particularly tissue-

specific functions, dependent on certain metabolites or nutrients (55).

Imbalance of lipid homeostasis may lead to pro-inflammatory

polarization of KCs thereby inducing inflammation in NAFLD.

Improvement of NASH by KCs elimination provides evidence for its

driving effect on early NASH (20). CD11c+ macrophages may be an

important subset driving hepatocyte death-induced inflammation and

fibrosis, which promotes disease progression from steatosis to NASH,

while KCs are amajor source of CD11c+macrophages (56).Macrophage

scavenger receptor 1 (MSR1, CD204) mediates lipid uptake and

accumulation in KCs and correlates with the degree of steatosis and

steatohepatitis in patients withNAFLD. In a fatty acid-rich environment,

MSR1 induces a pro-inflammatory response through the JNK signaling

pathway, and its blockade inhibits lipid accumulation in KCs, thereby

suppressing their pro-inflammatory polarization and the release of

cytokines such as TNF-a (57). Similarly, the knockdown of myeloid

forkhead box O1 (FoxO1) induced a shift in macrophage polarization

from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype

and reduced liver macrophage infiltration in a mouse model of high-fat

diet-induced NASH (58). At least for now, it seems that lipid overload

may promote M1 polarization of KCs and MoMFs through MSR1 and

FoxO1, respectively.

Nuclear receptors, including PPARs and liver X receptor (LXR),

are ligand-dependent transcription factors and involved in the
Frontiers in Immunology 05
regulat ion of l ipid and glucose metabolism genes and

inflammation-regulated genes (59). This provides another link

between macrophage lipid metabolism and inflammation. The three

isoforms of PPARs, PPARa, b/d, and g, play different but

complementary regulatory roles in lipid metabolism and

inflammation in the liver (48). The current studies have confirmed

the promotion and necessity of PPARg and PPARb/d on M2

polarization of macrophages (60, 61). And LXR can also induce the

anti-inflammatory phenotype of MoMFs by inhibiting TLR2, TLR4

and TLR9 and related pathways (62). Interestingly, although LXR was

expressed in both hepatocytes and macrophages, an LXRa agonist,

DMHCA, selectively activated LXRa in macrophages (63), suggesting

the feasibility of targeting LXR in macrophages. In addition, retinoic

acid-related orphan nuclear receptor alpha (RORa) is also thought to
regulate M2 polarization in macrophages in NAFLD (64). However,

the significance of RORa-specific deletion in macrophages for NASH

progression remains controversial (65). In addition to regulating lipid

metabolism and inflammation, nuclear receptors can also act as redox

sensors to sense metabolic stress and thus prevent oxidative damage

(66). Due to the important role of oxidative stress in promoting lipid

metabolism disorders and inflammation, targeting nuclear receptors

may improve NASH progression by regulating macrophage

phenotype through antioxidant, anti-inflammatory, and regulating

lipid metabolism.

Although the current study confirms the importance of lipid

metabolism reprogramming on the pro-inflammatory phenotype of

macrophages, changes in the phenotype and lipid metabolism of
FIGURE 3

The relationship between lipid metabolism and phenotype of macrophages. Activation of the TLR signaling pathway induced by LPS promotes M1
polarization of macrophages, which is manifested by increased glucose uptake, glycolysis, lipid biosynthesis and decreased OXPHOS. The IL-4 induced
M2 polarization of macrophages is manifested as the increase in lipid intake, FAO, and OXPHOS. IL-4, interleukin-4; IL-4R, interleukin-4 receptor; I-kB,
inhibitor of NF-kB; LPS, lipopolysaccharide; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; PPAR, peroxisome proliferative
activated receptor; SREBP, sterol-regulatory element binding protein; STAT6, signal transducer and activator of transcription 6; TLR4, toll-like receptor 4;
UCP2, uncoupling protein 2.
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hepatic macrophage subsets need to be further explored. A recent study

showed that depletion of a subset of CD206hi ESAM+KCs or silencing of

their fatty acid transporter protein CD36 reversed obesity and steatosis in

mice (67). CD36 and CD206 are both commonly considered to be M2

markers (68). These conflicting results further demonstrate the

complexity of macrophage function. Furthermore, the role of lipid

metabolism in macrophage polarization remains controversial,

although it is now generally accepted that glycolysis defines M1

macrophages and FAO defines M2 (43). Glycolysis, OXPHOS and

FAO may determine phenotypic shifts through complex interactions

rather than a single pathway, which remains to be elucidated.
5 Different types of PCD and lipid
metabolism in macrophages

Cells may die from accidental cell death (ACD) or regulatory cell

death (RCD). RCD is a strictly regulated form of cell death induced by

complex molecular mechanisms, and it is also known as PCD when it

occurs in the absence of external environmental interference (69).

PCD plays an important role in host defense against pathogens and

maintenance of body homeostasis, while its over-activation or

tolerance leads to the development of disease. Several types of PCD

have been identified including autophagy, apoptosis, necroptosis,

pyroptosis, and ferroptosis (Figure 4). We focused on these types of

PCD in macrophages in the NASH phase of NAFLD.
Frontiers in Immunology 06
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Autophagy is a catabolic process that degrades damaged

organelles and abnormally accumulated proteins via lysosomes

(70). Autophagy can be classified as macroautophagy, chaperone-

mediated autophagy (CMA), and microautophagy according to the

pathways of cytoplasmic materials into lysosomes (71). In addition,

autophagy can be further classified into selective and non-selective

autophagy according to the specificity of degradation substrates.

Physiological autophagy is essential for maintaining cellular

homeostasis, and its regulation of macrophage function is widely

recognized (72). It has been demonstrated that autophagy is impaired

in human livers with steatosis or NASH and that promoting

autophagy inhibits the pro-inflammatory activation of human

macrophage cell lines (73). Typically, autophagy of macrophages in

most NAFLD-related studies refers to macroautophagy, the lack of

which amplifies hepatic steatosis and/or liver injury through

overactivation of the innate immune response. Macrophage-specific

deletion of macroautophagy-dependent autophagy-associated

proteins such as autophagy protein 5 (ATG5) was shown to

increase IL1a and IL1b secretion thereby exacerbating liver

inflammation and fibrosis in mice (74). It is suggested that

autophagy contributes to the down-regulation of macrophage-

induced inflammatory responses, whereas insufficient autophagy

may lead to macrophage polarization toward pro-inflammatory M1.

Dysbiosis of intestinal flora and increased intestinal permeability in
FIGURE 4

Features of different types of PCD. Normal cells are induced to different forms of death by different stimuli or signals, including autophagy, apoptosis,
necroptosis, pyroptosis, and ferroptosis. Different PCD types exhibit different morphological features and play an important regulatory role in the
progression of inflammation. BECN1, beclin 1; AMPK, adenosine 5’-monophosphate (AMP)-activated protein kinase; RIPK, receptor-interacting protein
kinase; MLKL, mixed lineage kinase domain-like; GSDMD, gasderminD; DAMPs, damage associated molecular patterns; GPX4, glutathione peroxidases 4;
TFRC, transferrin receptor; SLC7A11, solute carrier family 7 member 11.
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NAFLD patients lead to elevated serum LPS levels, which induce

increased secretion of pro-inflammatory factors and reactive oxygen

species (ROS) through binding to TLR4, a pattern recognition

receptor on the membrane surface of macrophages (75). High

concentrations of ROS activated the oxidative stress regulatory

switch nuclear factor erythroid 2-related factor 2 (Nrf2) and further

induced transcription of antioxidant genes and sequestosome 1

(SQSTM1, also known as p62), thereby inducing p62-dependent

selective autophagy in macrophages (76). In contrast, autophagy-

deficient hepatic macrophages promoted liver inflammation and

fibrosis by enhancing the mitochondrial ROS (mtROS)/NF-kB/IL-
1a/b pathway (77).

As a cellular energy sensor, adenosine 5’-monophosphate (AMP)-

activated protein kinase (AMPK) can promote macrophage M2

polarization through mitochondrial autophagy (78). However, both

free fatty acids and hyperglycemia can lead to autophagy deficiency

through the inhibition of AMPK, thereby inhibiting macrophage M2

polarization (79, 80). A study based on liver-specific SQSTM1

knockout mice showed that SQSTM1 induces hepatocyte autophagy

by promoting the interaction between AMPK and unc-51 Like

Autophagy Activating Kinase 1 (ULK1) and further activates the

kelch-1ike ECH- associated protein 1 (Keap1)-Nrf2 signaling

pathway to protect the liver from lipotoxicity in mice (81). As an

important regulator of nutrient perception, growth, and metabolism,

the mammalian target of rapamycin complex (mTORC)

phosphorylates ULK1 to inhibit the interaction between AMPK and

ULK1 (82), exhibiting a regulatory role in autophagy in contrast to

SQSTM1. In addition, AMPK can also inhibit mTORC1 function by

phosphorylating Raptor in the mTORC1 complex (83). These studies

suggest an antagonism between AMPK and mTORC1 on the

regulatory function of autophagy. However, previous studies have

demonstrated that SQSTM1 also interacts with Raptor to activate

mTORC1 (84). Persistent deficiency of mTORC1 in macrophages has

also been shown to inhibit their M2 polarization by inducing

lysosomal dysfunction (85). The role of mTORC1 in the regulation

of macrophage autophagy and phenotype remains puzzling.

Lipid deposition in the liver impairs local oxygen homeostasis,

followed by tissue hypoxia-induced adaptive responses that ultimately

affect the homeostasis of hepatic lipid metabolism (86). Since oxygen

is transported through the blood, hypoxia means impaired blood

microcirculation. Therefore, hypoxia and nutritional disorders occur

simultaneously. Nutrient depletion caused by hypoxia activates

AMPK and simultaneously inactivates mTORC1 thereby inducing

autophagy to maintain cell survival. As a key regulator of hypoxia,

Hypoxia-inducible factor 1 subunit alpha (HIF-1a) can broadly

regulate the expression of hypoxia-inducible genes and the

activation of various signaling pathways (87). A study based on

methionine and choline-deficient L-amino acid diet (MCD)-fed

mice and NASH patients showed that HIF-1a expression in hepatic

macrophages was induced by palmitic acid, thereby reducing

autophagic flux and targeting inflammasomes to increase IL-1b
production (88). Although HIF-1a and AMPK/mTORC1 regulate

macrophage autophagy and phenotypic transformation as important

links of hypoxia and energy regulation, respectively, their interactions

are still not systematically elucidated.

Currently, studies on HIF-1a and AMPK regulation of lipid

metabolism in NAFLD are mainly carried out in hepatocytes
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(89, 90) . The mechanisms by which l ipid metabolism

reprogramming in macrophages regulates autophagy are still poorly

understood. Monoacylglycerol lipase (MAGL), the rate-limiting

enzyme in the degradation of monoacylglycerols, not only degrades

triacylglycerols to free fatty acids and glycerol, but also metabolizes

endogenous cannabinoid receptor ligand 2-arachidonyl acid glycerol

to arachidonic acid (91). During chronic liver injury, MAGL inhibited

macrophage autophagy to promote inflammation and fibrosis,

whereas inhibition of MAGL reduced the number of Ly-6Chi

macrophages and increased the number of Ly-6Clo macrophages in

an autophagy-dependent manner (92). In high-fat diet-induced obese

mice, MAGL deletion also exhibited improved inflammation and

insulin resistance in adipose tissue and reduced triglyceride levels in

the liver (93). This provides evidence for a link between macrophage

autophagy and lipid metabolism reprogramming. In addition,

macrophage autophagy reduces programmed death ligand 1 (PD-

L1) expression and thus inhibits hepatocellular carcinogenesis, while

defective autophagy induces its immunosuppressive phenotype and

thus promotes hepatocellular carcinoma progression (94). Given the

increased incidence of NAFLD-associated HCC, regulation of

macrophage autophagy may be valuable in reducing NAFLD-

associated HCC.
5.2 Apoptosis

Apoptosis is a Caspase-dependent cell death that includes

intrinsic pathways induced by DNA damage, ROS accumulation,

and endoplasmic reticulum stress (also known as the mitochondrial

pathway) as well as exogenous apoptotic pathways initiated by the

binding of other cellular soluble or cell surface ligands including TNF,

FasL, or TRAIL to death receptors (95). The Caspase family is a family

of evolutionarily conserved cysteine-dependent endonucleases that

are primarily involved in cell death and inflammatory responses.

Caspases involved in apoptosis are divided into two main categories:

initiating Caspases (Caspases-2, 8, 9 and 10) and effector Caspases

(Caspases-3, 6 and 7) (96). Current studies have amply demonstrated

that Caspases-3, 6, 7, 8, and 9 promote the progression of NASH (97).

Among them, Caspases-8 is mainly involved in the exogenous

apoptotic pathway, while Caspases-9 is mainly involved in the

endogenous apoptotic pathway. Increased positivity of the terminal

deoxynucleotidyl transferase-mediated dUTP nick end labeling

(TUNEL) assay in liver tissue of NASH patients demonstrates the

involvement of apoptosis in the progression of NASH (98). Most of

the current studies on apoptosis have been conducted on hepatocytes

and few on macrophages. A study based on a high-fat diet-induced

mouse model of NAFLD and primary KCs demonstrated that IL-4-

activated M2 KCs could release IL-10 to promote apoptosis of M1

KCs thereby reducing liver inflammation and hepatocyte injury in

NAFLD (99). This study suggests an intrinsic regulatory mechanism

for the balance of M1 and M2 macrophages, i.e., M2 macrophages

induce protective apoptosis of M1 macrophages and their dysfunction

leads to the accumulation of M1 macrophages in the liver and the

progression of inflammation.

Endoplasmic reticulum stress is significantly associated with

lipotoxicity and NASH (100). C/EBP homologous protein (CHOP)

is a transcription factor downstream of protein kinase RNA-
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activated-like ER kinase. CHOP is induced by endoplasmic reticulum

stress and its deletion prevents apoptosis induced by endoplasmic

reticulum stress (101). As endoplasmic reticulum stress can induce

TRAIL receptors and activate Caspase-8 (102), this may string

endogenous apoptotic and exogenous apoptotic pathways together.

Early studies demonstrated that CHOP deficiency promotes

macrophage resistance to lipotoxicity and the progression of

inflammation in NAFLD (103). Therefore, CHOP may have the

effect of inducing apoptosis of M1 macrophages and thus regulating

hepatic macrophage homeostasis to protect the liver from

steatohepatitis. The role of LXRa in promoting M2 polarization in

hepatic macrophages has been discussed above. Paradoxically, a

peritoneal macrophage-based study demonstrated that LXRa can

inhibit the CHOP pathway induced by endoplasmic reticulum

stress and thus inhibit macrophage apoptosis (104). The

relationship between CHOP and LXRa in M1 macrophages in the

liver obviously needs to be further explored.

The suppressor of cytokine signaling (SOCS) family is a class of

proteins with negative feedback regulation on cytokine signaling

pathways, including eight members of SOCS1 to SOCS7 and cytokine-

inducible SH2-containing protein (CIS) (105). Currently, SOCS1,

SOCS2 and SOCS3 are the most studied in macrophages. IL-4-induces

SOCS2 expression, IFN-g induces SOCS3 expression, while SOCS1 can
be induced by both (106). Differently, induction of SOCS1 by IL-4 is

signal transducer and activator of transcription 6 (STAT6) dependent,

whereas induction of SOCS1 by IFN-g is STAT1 dependent. At the same

time, IL-4 induced SOCS1 can inhibit the expression of STAT6 and form

a negative feedback signal. A recent study showed that SOCS2 expression

in macrophages was negatively correlated with the degree of NASH

(107). The study also found that SOCS2 plays a role in inhibiting

inflammation and apoptosis via NF-kB and inflammasome signaling

pathway inmacrophages during NASH. In addition, SOCS1 and SOCS3

have been shown to inhibit the exogenous apoptotic pathway in other cell

lines such as renal tubular epithelial cells and prostate cancer cells,

respectively (108, 109). Overall, SOCS2 may promote M2 polarization

and inhibit apoptosis in macrophages, while SOCS1 and SOCS3 may

promoteM1 polarization and inhibit apoptosis. The three are induced by

different signals to inhibit exogenous apoptosis in macrophages of the

corresponding phenotype thereby regulating the progression of NASH.

Notably, both SOCS1 and SOCS3 have been shown to have inhibitory

effects on FAO (110–112). Although these studies were not performed in

macrophages, themechanisms all involved inhibition of the Janus kinase

(JAK)/STAT pathway. Different from SOCS1 and SOCS3, the effect of

SOCS2 on lipidmetabolismhas received rarely attention.Although it has

been shown to prevent hepatic steatosis due to high-fat diet (113), some

studies suggest that it does not promote the increase of FAO in the liver

(114). In conclusion, it remains to be clarifiedwhether the SOCS family is

involved in the regulation of macrophage polarization and apoptosis by

inhibiting FAO through the JAK/STAT pathway.
5.3 Necroptosis

Necroptosis is a caspase-independent necrotic cell death program

regulated by receptor interacting serine/threonine kinase 1 (RIPK1)

and RIPK3. It can be triggered by extracellular stimuli that activate

inflammation and cell death. Various innate immune signaling
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pathways such as TNFR, TLR and interferon receptors (IFNRs) can

induce the binding of RIPK1 and RIPK3, which then leads to

phosphorylation and translocation of mixed lineage kinase domain-

like pseudokinase (MLKL) to the cell membrane, ultimately leading to

necroptosis and release of damage-associated molecular patterns

(DAMPs) (115). Precisely, RIPK1 induces apoptosis rather than

necroptosis when Caspase-8 is present. When Caspase-8 is

inhibited, deubiquitinated RIPK1 does not bind to complex 2, but

to RIPK3, forming a necrosome complex and subsequently recruiting

and activating MLKL (116). Thus, inhibition of Caspase-8 is as

important as activation of RIPK3 for necroptosis. In contrast,

RIPK1, although involved in the induction of necroptosis, may not

be necessary for necroptosis. Depletion of nicotinamide adenine

dinucleotide (NAD+) is sufficient to trigger necroptosis in a RIPK3-

and MLKL-dependent manner (117), which provides a non-classical

necroptotic pathway.

Necroptosis plays an important role in macrophage polarization

and inflammation. A study based on aged mice showed that aging led

to increased necroptosis in liver macrophages and release of pro-

inflammatory factors including TNFa, IL-6 and IL-1b, while

necrostatin-1s, a necroptosis inhibitor, significantly reduced M1

macrophages and improved inflammation (118). This study

suggests that necroptosis promotes M1 polarization of

macrophages. O-acetylglucosamine glycosylation modification (O-

GlcNAcylation) is a specific glycosylation modification of

intracellular proteins that can affect the localization, function and

stability of substrate proteins (119). LPS-activated M1 macrophages

exhibit attenuated hexose biosynthetic pathway and protein O-

GlcNAcylation, while O-GlcNAc transferase (OGT) mediated O-

GlcNAcyclization of RIPK3 prevented the hetero interaction and

homo interaction of RIPK3-RIPK1, thereby inhibiting macrophage

necroptosis (120). A study based on patients with NASH and choline-

deficient L-amino acid-defined diet (CDAA)-induced NAFLDmodels

in mice showed that hepatic RIPK3 correlated with NAFLD severity

in humans and mice and RIPK3 deficiency ameliorated CDAA-

induced inflammation, fibrosis and carcinogenesis in mice (121).

Even though RIPK3 has now emerged as one of the promising

targets for the treatment of NASH, the mechanism by which

necroptosis regulates macrophage polarization has not been

systematically elucidated. Studies based on the RIP3-deficient

mouse model demonstrated that RIPK3 promotes the TLR4-NF-kB
pathway via Rho-associated coiled-coil-containing protein kinase

(ROCK)1 and thereby induces M1 polarization of macrophages in

the liver (122). The effect of necroptosis onM1macrophage activation

and pro-inflammation may also be paracrine-related. Interestingly,

M1 but not M2 macrophages exhibited higher RIPK3 and MLKL

expression when BMDMs were intervened with necroptosis inducers

(123). In contrast, another study expressed a different result. Blockade

of TAK1, the RIPK1 inhibitor, induced more intense necroptosis in

M2 but not M1 peripheral blood monocyte-derived macrophages in

the context of Caspase inhibition (124). The mechanisms underlying

these different results are still unclear. Necroptosis may be involved in

both depletion of M2 macrophages and activation of M1 to promote

the progression of inflammation in NASH.

There may be a correlation between the necroptosis of

macrophages and their lipid metabolism reprogramming. RIPK3

was downregulated in macrophages in HCC and promoted FAO
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via the ROS-Caspase1-PPAR pathway, which induced the

reprogramming of fatty acid metabolism and ultimately induced

M2 polarization in tumor-associated macrophages (125). An

atherosclerosis-based study found that MLKL deficiency

exacerbated lipid accumulation despite reducing the occurrence of

necroptosis in macrophages (126). Another study based on the high-

fat diet-induced NAFLD model in mice also showed that RIPK3

deficiency inhibited inflammation while exacerbating hepatic

steatosis (127). These studies suggest that the inhibition of

necroptosis may promote increased lipid uptake or de novo

synthesis of fatty acids. Therefore, the relationship between

necroptosis and the reprogramming of lipid metabolism in

macrophages remains to be further clarified.
5.4 Pyroptosis

Pyroptosis is a form of PCD mediated by inflammasome

activation, which is manifested by continuous cellular distension

until the cell membrane ruptures, thereby releasing cellular contents

to activate an intense inflammatory response. Classical pyroptosis is

regulated by the inflammasome composed of NLRP3, apoptosis-

associated speck-like protein containing a CARD (ASC), pro-

Caspase-1 and gasdermin D (GSDMD) (128). Various exogenous

and endogenous signals including LPS and ATP can induce

inflammasome formation followed by activation of Caspase-1.

Activated Caspase-1 cleaves pro-IL-1b and pro-IL-18 to mature IL-

1b and IL-18, while cleaving the pyroptotic substrate GSDMD and

forming membrane pores to induce pyroptosis and releasing IL-1b
and IL-18 (129). The non-classical pyroptosis pathways are

cytoplasmic LPS-mediated activation of Caspase-4/5/11 and

cleavage by GSDMD (130). Xu et al. (131) showed that GSDMD

and its fragment GSDMD-N protein expression, which induce

pyroptosis, were significantly increased in liver tissues of NAFLD/

NASH patients and correlated with NAFLD activity score and

fibrosis. In contrast, MCD-fed GSDMD-/- mice were free from

steatohepatitis and fibrosis, demonstrating the role of GSDMD-

mediated pyroptosis in promoting NASH. In addition to GSDMD,

most members of the gasdermin family can also induce pyroptosis

(132), but their role in NAFLD still needs further evaluation.

Most studies on pyroptosis have focused on hepatocytes, but

inflammasomes are mainly expressed in immune cells, especially

macrophages (133). As an important regulator of anti-inflammation

and antioxidant, Nrf2 is downregulated in the liver of NASH patients

(134). Macrophage-specific Nrf2 knockdown promotes ROS and IL-

1b production via a YAP-NLRP3-dependent manner thereby

exacerbating NASH progression (135), suggesting the promotion of

macrophage pyroptosis on NASH progression. Meanwhile, the

gasdermin family may also induce mtROS release by targeting the

mitochondrial membrane, thereby triggering NLRP3 inflammasome

activation (136, 137). These studies suggest that pyroptosis may

promote NASH progression by inducing ROS release and thus

amplifying the cascade of pyroptosis and inflammation. Given the

regulation of pyroptosis by the NLRP3 inflammasome, inhibition of

the NLRP3 inflammasome may attenuate the inflammatory response

of liver tissue by inhibiting macrophage pyroptosis (138). NLRP3

blockade also shows improvement in liver inflammation and fibrosis
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in atherogenic diet-fed foz/foz mice with NASH (139). In addition to

the NLRP3 inflammasome, other inflammasome complexes, such as

the NLR family CARD domain containing 4 (NLRC4)

inflammasome, can also be involved in NAFLD inflammatory

progression by promoting macrophage pyroptosis (140). In

conclusion, inflammasome activation induces macrophage

pyroptosis on the one hand and mediates macrophage polarization

on the other. This provides evidence for a close relationship between

liver macrophage pyroptosis and pro-inflammatory polarization

in NASH.

As mentioned above, macrophage polarization is regulated by

disorders of lipid metabolism. Previous studies have demonstrated

that lipids released from dead hepatocytes in NASH activate

macrophages to overexpress NLRP3 inflammasome and Caspase-1

(141). Therefore, macrophage pyroptosis may be associated with lipid

metabolism. Bile acids are endogenous ligands for nuclear receptors

that regulate lipid and energy metabolism (142). As a bile acid

receptor, G protein-coupled bile acid receptor 1 (GPBAR1, also

known as TGR5)-mediated bile acid signaling plays a key role in

integrating glucose, lipid and energy metabolism (143). TGR5

activates PPARa and PPAR-g coactivator 1 alpha (PGC-1a) to

increase mitochondrial oxidative phosphorylation and energy

metabolism and inhibit NF-kB-mediated pro-inflammatory

cytokine production (144, 145), which is important for the

metabolic reprogramming of M2 macrophages. Shi et al. (146)

found that TGR5 expression was significantly reduced in the liver

tissue of NASH patients and mouse models, while TGR5 knockdown

exacerbated liver injury and inflammation and promoted macrophage

M1 polarization in mice. Mechanistically, TGR5 signaling inhibits

NLRP3-mediated macrophage M1 polarization thereby ameliorating

hepatic steatosis and inflammation. Although the available evidence

suggests an association between macrophage pyroptosis and lipid

metabolism, the regulatory mechanisms are still poorly understood.
5.5 Ferroptosis

Ferroptosis is a form of iron-dependent cell death mediated by

lipid peroxidation, whose main biochemical features are iron

deposition and lipid peroxidation (147). Both increased iron uptake

and decreased iron excretion may lead to iron overload, which in turn

leads to excessive ROS production and lipid peroxidation through

Fenton reaction and enzymatic oxygenation, subsequently triggering

ferroptosis. The liver is one of the most important organs for iron

storage and metabolism. Due to the abnormal lipid deposition in the

liver of NASH patients, this may promote the development of

ferroptosis. The correlation between disease progression and liver

iron overload in NAFLD patients has been demonstrated (148). A

bioinformatics study showed that the grading of liver steatosis was

associated with 8 iron death-related genes including ACSL3, ACSL4,

AKR1C1, AKR1C2, CS, FADS2, GSS and PGD (149). Another study

also showed that the expression of SLC11A2, CP, SLC40A1, and

ACSL5 was downregulated in the livers of NASH patients compared

to healthy livers, while the expression of FTL, FTH1, ACSL4, and

ACSL6 was upregulated (150). Actually, targeted ferroptosis has been

shown to improve inflammation in both MCD and choline-deficient,

ethionine-supplemented (CDE) diet-induced NASH models in mice
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(151, 152). Current studies on the role of ferroptosis in NAFLD

progression have focused on hepatocytes and HSCs (153). Since liver

iron is mainly distributed in hepatocytes and reticuloendothelial

system (macrophages), iron deposition in macrophages may play a

role in NASH. An earlier multicenter study that included 849 patients

with NAFLD has also demonstrated that iron deposition in

macrophages is associated with severe NASH and advanced liver

histological features (154).

Previous studies have confirmed that iron chelation in M1

macrophages may contribute to the development of chronic

inflammation, while iron export from M2 macrophages may

promote the growth of adjacent cells in the microenvironment

(155), suggesting that macrophage polarization is associated with

altered iron metabolism. A study based on BMDMs showed that iron

overload increased the levels of M1 products (e.g. IL-6, TNF-a and

IL-1b), promoting their polarization to the M1 type while

exacerbating steatohepatitis and liver fibrosis (156). This study also

showed that iron overload inhibited M2 polarization in BMDMs in

the presence of IL-4. This differential performance may be associated

with higher expression of Hamp and ferritin heavy chain (FTH)/

ferritin light chain (FTL) and lower expression of ferroportin (FPN1,

also known as SLC40A1) and iron regulatory proteins 1/2 (IRP1/2) in

M1 macrophages compared to M2 (157). Moreover, the stronger

antioxidant capacity of M1 macrophages enhanced their resistance to

iron overload (158). Thus, under the same conditions, M2

macrophages may be induced to die, while the M1 type survives. As

iron may be involved in the regulation of energy production and

amino acid catabolism, the regulation of iron metabolism in polarized

macrophages may alter the macrophage phenotype. For example,

anti-inflammatory M2 macrophages in the tumor microenvironment

can be converted to pro-inflammatory M1 macrophages via

ferroptosis (159, 160). However, whether macrophages have this

property in NASH remains to be elucidated. Notably, a study based

on human monocytic leukemia THP-1 cell-derived macrophages

showed that macrophages exhibit M2 polarization rather than M1

in response to chronic iron overload (161), but this may be related to

metabolic changes in tumor-associated macrophages.

There is also a connection between ferroptosis and lipid

metabolism, which has been well summarized in a recent review

(162). Ferroptosis is characterized by iron-dependent peroxidation

with phospholipids containing polyunsaturated fatty acyl (PUFA)

chains as substrates. Monounsaturated fatty acids (MUFAs), as

inhibitor of iron death (163), can be synthesized de novo in cells

and participate in membrane lipid composition. Lipid metabolism

may control the composition of membrane lipid by regulating the

balance of PUFAs and MUFAs.Interestingly, sterol-regulatory

element binding protein 1 (SREBP-1), which regulates MUFAs

synthesis, is upregulated in M1 macrophages. One possible

explanation is that ferroptosis signaling induces M1 polarization in

macrophages, while reprogramming of lipid metabolism increases

their resistance to ferroptosis. Similarly, not only fatty acid b-
oxidation is increased in M2 macrophages, but also lipid transport

proteins such as CD36 are upregulated. Given that fatty acid b-
oxidation reduces the accumulation of PUFAs and thus inhibits lipid

peroxidation (164), and that CD36-mediated lipid uptake increases

susceptibility to ferroptosis (165), the ferroptosis-mediated shift in
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macrophage phenotype may ultimately depend on the disruption of

the balance between PUFAs and MUFAs.
6 Interaction of signals of different
types of PCD in macrophages

Due to the complex signal environment in the body, there is

significant crosstalk between different types of PCD (Figure 5). As one

of the main inducing pathways of exogenous apoptosis, the TNF

signaling pathway also induces necroptosis. The difference is that

necroptosis is RIPK3-dependent MLKL activation, while apoptosis is

manifested as activation of Caspase-8. A study based on the mouse

NASH model induced by MCD showed that Caspase-8 could balance

the over-activation of RIPK3-dependent necroptosis, suggesting the

mutual inhibition of RIPK3 and Caspase-8 (166). However, the study

was performed based on hepatocytes rather than macrophages.

Increased autophagy inhibits necroptosis by upregulating ATG16L1

(167) and inhibits apoptosis by inhibiting Caspase-8 activity (168).

MLKL, another key regulator of necrotic apoptosis, has been

demonstrated to participate in autophagy inhibition in a RIPK3-

independent manner in FFC diet (high in fat, fructose and

cholesterol) induced NASH mice and palmitic acid treated primary

mouse hepatocytes (169). These studies suggest that Caspase-8 is a

key node in balancing apoptosis and necroptosis, while MLKL may be

an essential node in balancing autophagy and necroptosis. In addition

to Caspase-8, Caspase-6 has also been shown to be involved in the

interaction between autophagy and apoptosis. As an important

participant in autophagy, AMPK can also inhibit apoptosis by

phosphorylating Caspase-6 to inhibit its function (170), suggesting

an antagonistic mechanism between autophagy and endogenous

apoptosis. Notably, the relationship between autophagy and

necroptosis is not merely antagonistic. For example, a recent study

showed that RIPK3 can directly bind and activate AMPK (171).

Considering the mutual inhibition of AMPK and mTOR to regulate

autophagic signaling in the downstream, this may be an important

link in the balance of autophagy and necroptosis. As an upstream

regulator of RIPK3, RIPK1 regulates apoptosis and necroptosis

through Caspase-8 and RIPK3, respectively (115). Caspase-8 has

been shown to cleave GSDMD to induce pyroptosis (172). These

studies all illustrate the complex interaction network among

pyroptosis, apoptosis and necroptosis. In experimental and clinical

NASH, RIPK1 is phosphorylated and activated mainly in liver

macrophages, especially in BMDMs (173). As mentioned above,

palmitic acid-induced a decrease in autophagic flux of macrophages

(88). However, palmitic acid also induced the activation of RIPK1

(173). Thus, fatty acid-induced inflammatory activation of

macrophages was accompanied by an inhibition of autophagy and

an increase in apoptosis, necroptosis, and pyroptosis, while the

predominant PCD type may be associated with different inducing

factors and cytokine expression.

Activation of the NLRP3 inflammasome is not only the initiating

link of classical scorch death, but also leads to other types of PCD,

including apoptosis, necroptosis, and ferroptosis (132).

Prostaglandin-endoperoxide synthase 2 (PTGS2), one of the

markers of iron death, regulates the synthesis of cyclooxygenase-2
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(COX-2). However, COX-2 increases pro-IL-1b and NLRP3

expression through NF-kB activation and mediates NLRP3

inflammasome activation by enhancing Caspase-1 activation

through promoting mitochondrial damage and ROS production

(174), which may lead to an increase in pyroptosis. As a major

member of the antioxidant system and an important regulator of

ferroptosis, glutathione peroxidases 4 (GPX4) also showed the

function of inhibiting macrophage pyroptosis (175). Therefore,

pyroptosis and ferroptosis may promote each other and thus

regulate macrophage pro-inflammatory polarization. The

relationship between selective autophagy and ferroptosis has also

been widely demonstrated (176). Autophagy promotes ferroptosis

through selective degradation of ferritin (177), GPX4 (178), SLC40A1

(179), aryl hydrocarbon receptor nuclear translocator-like (ARNTL)

(180), and lipid droplets (181). As a widely recognized inhibitor of

autophagy, mTORC1 has also been shown to inhibit ferroptosis by

regulating GPX4 synthesis (182). Since DAMPs including

proteoglycan decorin (DCN) secreted by ferroptotic cells can bind

to advanced glycosylation end-product-specific receptor (AGER) on

macrophages and further trigger the production of pro-inflammatory

cytokines in an NF-kB-dependent manner. Macrophage-selective

autophagy and ferroptosis may promote each other and induce the

formation of the NASH inflammatory microenvironment (183).

Interestingly, although both pyroptosis and selective autophagy can

promote the occurrence of ferroptosis, they do not promote each
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other. The inhibition of macrophage autophagy has been previously

mentioned to be associated with increased pyroptosis. The inhibition

of macrophage autophagy has been previously mentioned to be

associated with increased pyroptosis. A recent study also confirmed

that Tim-4, a phosphatidylserine (PS) receptor, activates liver kinase

B1 (LKB1)/AMPKa-mediated autophagy to inhibit NLRP3

inflammasome activation, thereby improving the release of IL-1b
and IL-18 from macrophages (184), suggesting that Tim-4+

macrophages may inhibit the onset of pyroptosis through

autophagy. On the other hand, peritoneal Tim-4 macrophages

could inhibit CD8+ T proliferation (185), while activated CD8+ T

cells could release granzyme B to induce increased macrophage

pyroptosis and promote NAFLD progression (186). Thus, Tim-4-

mediated macrophage autophagy not only directly inhibits

pyroptosis, but also indirectly inhibits macrophage pyroptosis by

suppressing CD8+ T cell activation, suggesting an antagonistic

relationship between autophagy and pyroptosis.

It is now generally accepted that the progression of NAFLD is

caused by liver lipotoxicity. Possible mediators of lipotoxicity include

free cholesterol, saturated free fatty acids, diacylglycerol,

lysophosphatidylcholine, sphingolipids, and ceramides (187).

Lipotoxic mediators not only induce damage and death of

hepatocytes thereby recruiting macrophages, but also directly

induce M1 polarization of macrophages. Mitochondria serve as

important sites of energy metabolism and regulate liver lipid
FIGURE 5

Association of different types of PCD in macrophages. The interaction between different PCD constitutes a complex regulatory network for survival or
death of macrophages. AMPK, mTOR, Casp-8, RIPK3, Bcl-2 and p62 may be important nodes in the interaction of autophagy, apoptosis, necroptosis,
pyroptosis and ferroptosis in this cell death network. ASC, apoptosis-associated speck-like protein; Casp, Caspase; CHOP, C/EBP homologous protein;
cIAP, cellular inhibitor of apoptosis protein; COX-2, cyclooxygenase-2; FADD, Fas-associating protein with a novel death domain; FASL, Fas Ligand; FPN,
ferroportin; GSDME, gasdermin E; GSH, glutathione; GSSG, glutathiol; IFN, interferon; Jak, janus kinase; KEAP1, kelch-1ike ECH-associated protein 1; LDs,
lipid droplets; mTOR, mammalian target of rapamycin; Myd88, myeloid differentiation primary response 88; NCOA4, nuclear receptor coactivator 4;
NLRP3, NOD-like receptor thermal protein domain associated protein 3; NRF2, nuclear factor erythroid 2-related factor 2; ROS, reactive oxygen species;
SLC3A2, solute carrier family 3 member 2; TFR1, transferrin receptor 1; TNFR1, tumor necrosis factor receptor 1; TRADD, TNFR1-associated death
domain protein; TRAF, TNF-receptor associated factor.
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metabolism and oxidative stress. Changes in mitochondrial

metabolism and physiology may underlie the corresponding

phenotypes of macrophage activation induced by various signals,

including alterations in oxidative metabolism, mitochondrial

membrane potential and tricarboxylic acid cycle, as well as the

release of mtROS and mtDNA and alterations in mitochondrial

ultrastructure (188). Excess ROS attacks biological membranes

leading to lipid peroxidation, which not only direct damages

phospholipids but also acts as a cell death signal to induce PCD.

Numerous studies have confirmed that mitochondrial ROS can

induce a variety of PCD in macrophages including pyroptosis

(189), autophagy (190), apoptosis (191), necroptosis (192),

and ferroptosis (193), suggesting that macrophage polarization and

death are closely related to disturbed energy metabolism and

oxidative stress. However, it is poorly understood that how

dysregulated lipid metabolism in the complex in vivo environment

leads to different types of PCD in macrophages. Mitochondria play an

important role as the energy center in different types of PCD (164),

and the development of single cell omics and mitochondriomics may

provide valuable information. This aspect is still poorly understood

and requires continuous and intensive research.
7 Potential drugs targeting PCD
of macrophages

As drivers of hepatic steatosis, inflammation, fibrosis and

important players in hepatic lipid metabolism, macrophages are

attractive therapeutic targets for the treatment of NAFLD. The

main strategies currently used to target macrophages include

inhibition of monocyte infiltration and inhibition of pro-

inflammatory macrophage polarization (194). The improvement of

liver inflammation by inhibition of MoMFs infiltration has been well

supported by evidence in preclinical studies. A randomized, double-

blind, multinational phase 2b study showed that canicriviroc, a dual

chemokine receptor CCR2/CCR5 inhibitor, doubled the proportion

of patients with at least 1 stage of fibrosis improvement after 1 year

despite no improvement in liver inflammation (34). The nuclear

receptor family mediates anti-inflammatory polarization of

macrophages, thus providing a link between inflammation and lipid

metabolism and may be a promising target for NAFLD treatment.

Drugs targeting nuclear receptors for the treatment of NAFLD

including pan-PPAR agonist (Lanifibranor), PPAR-a/d agonists

(elafibranor), PPAR-a/g agonist (Saroglitazar) and FXR agonist

(Obecholic acid) have been well summarised (48). These drugs may

have the effect of modulating both lipid metabolism and phenotypes

of macrophages, but more evidence is needed.

PCD is involved in the regulation of the pro-inflammatory

polarization of macrophages. Although apoptosis does not induce

intense inflammation, apoptosis inhibition has also been considered a

therapeutic strategy for NAFLD. As mentioned above, the Caspase

family plays an important role in M1 polarization and apoptosis of

macrophages. A double-blind, placebo-controlled clinical trial

demonstrated that 28 days of treatment with the pan-Caspase

inhibitor emricasan significantly reduced ALT and Caspase-3/7

activation in patients with NAFLD (195). However, another clinical

study showed that 72 weeks of emricasan treatment did not improve
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liver histology in patients with NASH fibrosis and may have worsened

fibrosis and ballooning (196). Similarly, apoptosis signal-regulated

kinase 1 (ASK1) promotes the mitochondrial apoptotic pathway. A

multicenter phase 2 clinical trial showed that 24 weeks of treatment

with Selonsertib, an ASK1 inhibitor, had no effect on histological

inflammation or ballooning despite a reduction in liver fibrosis (197).

As the pro-inflammatory properties of hepatocytes and hepatic

stellate cells are also regulated by PCD, it is difficult to identify

which type or types of liver cells are targeted by these drugs in vivo.

Multiple types of PCD may act in combination to induce the pro-

inflammatory polarization of macrophages. These targeted drugs may

have induced other types of PCD and thus failed to improve liver

inflammation. Inhibition of Caspases, particularly Caspase-8, may

lead to a bias towards necroptosis. Necroptosis of monocytes induced

by LPS and pan-Caspase inhibitors increased CXCL1/2, TNF-a and

IL-6 expression, whereas inhibition of RIPK3 resulted in a decrease in

CXCL1 and CXCL2 and an increase in TNF-a (127). This result

suggests that inhibition of a single type of PCD does not resolve

inflammation completely. In addition, some natural drugs and their

active ingredients have extremely strong anti-inflammation and anti-

oxidation capabilities (198), which help regulate the death of

macrophages, and are also potential therapeutic drugs for NAFLD.

Licochalcone B (LicoB), a main component of the traditional

medicinal herb licorice, is a specific inhibitor of the NLRP3

inflammasome which directly binds to never in mitosis A-related

kinase 7 (NEK7) and inhibits the interaction between NLRP3 and

NEK7 (199). Glycyrrhetinic acid, another active ingredient of licorice,

can also improve the damaged autophagy flux and reduce the

excessive production of inflammatory cytokines such as TNF-a, IL-
6 and IL-1b by regulating the STAT3-HIF-1 pathway of macrophages

(200). Curcumin and berberine, two of the most studied natural

products for the treatment of NAFLD, have shown positive results in

several clinical trials (201, 202). Mechanistic studies have also

demonstrated the effect of both on macrophage polarization (203,

204). However, whether regulation of PCD is involved

remains unclear.

Given the possible relationship between PCD-regulated

macrophage polarization and lipid metabolism, drugs that regulate

lipid metabolism may also improve NAFLD by modulating PCD of

macrophages and thereby inhibiting the pro-inflammatory

polarization. For example, Ezetimibe blocks the NLRP3

inflammasome-IL-1b pathway in macrophages in an autophagy

dependent manner, and regulates the interaction between

hepatocytes and macrophages through extracellular vesicles (73). In

addition, sodium dependent glucose transporters 2 (SGLT2)

inhibitors not only control blood glucose by inhibiting the

reabsorption of glucose by the proximal tubules of the kidney, but

also show regulatory effects on lipid metabolism, such as lipid

synthesis and FAO (205). Empagliflozin, one of the SGLT2

inhibitors, also shows the role of regulating the AMPK/mTOR

signal pathway to enhance autophagy of liver macrophages in

T2DM mouse models with NAFLD (206). The therapeutic strategy

of targeting lipid metabolism and PCD for the treatment of NAFLD is

gradually being emphasized, and the research progress and clinical

trials of inhibitors of the relevant targets are well summarized in a

recent review (207). However, it is unclear whether these inhibitors

target hepatic macrophages. In Table 1, we briefly summarize
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potential small molecule drugs that may improve NAFLD by

regulating PCD of macrophages. The safety and efficacy of these

small molecule drugs still need to be supported by more

clinical evidence.
8 Discussion

Lipid metabolism disorders are an important factor in the

development of NAFLD. Lipid deposition is not the main

inducement of cell damage, but it makes cells more vulnerable to

the influence of internal and external environments and aggravates

cell damage (211). Once the fuse is ignited, disordered lipid

metabolism can rapidly exacerbate the hepatic inflammatory

cascade. Compared to other liver disease, NAFLD is more likely to

be susceptible to severe damage from lipid peroxidation. This may be

part of the reason that NAFLD can progress to HCC without the stage

of liver cirrhosis. As an important regulator of hepatic inflammatory

homeostasis, the M1/M2 imbalance in macrophages leads to the

development and progression of inflammation. Based on the

important role and huge number of macrophages in liver immune

cells, targeting macrophages is of great significance to improve the

development and progression of inflammation in NAFLD. Lipids, as

key metabolites in macrophage polarization, are closely associated

with macrophage function. Conventional opinion suggests that M1

macrophages are dependent on glycolysis for energy while M2

macrophages are dependent on FAO. However, this view has been

challenged by some data in recent years, which demonstrate the

complexity of macrophage metabolism. Therefore, it remains difficult

to answer whether intervention in the lipid metabolic reprogramming

of macrophages can improve NASH, and the metabolic profile of

different phenotypes of macrophages still needs to be further clarified.

PCD is closely related to the polarization of macrophages.

Compared with M2 macrophages, M1 macrophages may be more

tolerant to various types of PCD, which leads to its survival in

inflammation. At present, most studies targeting macrophages to

treat NAFLD only focus on different types of PCD. As mentioned
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above, various types of PCD crosstalk with each other, which makes it

difficult to obtain satisfactory results by blocking a single type of PCD.

Other types of PCD can continue to promote the progress of

inflammation as a complementary or alternative way. Therefore,

elucidating the relationship between different types of PCD and the

main regulatory factors will help to effectively regulate the

proinflammatory polarization of macrophages. Regulation of

macrophage polarization by targeting key regulators of specific

macrophage populations to inhibit the pro-inflammatory PCD may

be a promising therapeutic strategy for NAFLD. Most studies only

provided preliminary evidence for the correlation between PCD and

lipid metabolism of macrophages. Based on the regulation of lipid

metabolism reprogramming on macrophage polarization, exploring

the relationship between PCD and lipid metabolism may help to

clarify how PCD regulates the phenotypic transformation of

macrophages, and provide a basis for the strategy of targeting

macrophages in the treatment of NAFLD.

A suitable animal model is important for mechanistic studies and

pre-clinical evaluation of drugs. The pathology of NAFLD is

extremely complex. Animal models of NAFLD, whether induced by

high-fat, MCD, CDAA diets or specific gene deletions, are only

partially reflect the characteristics of NAFLD in humans. This may

have led to frustration in clinical trials of numerous drugs that

performed well in pre-clinical studies. In addition, the majority of

pre-clinical studies were conducted on mice. Species differences lead

to inconsistent expression of phenotypic, inflammation, and

metabolism-related genes in human and mouse macrophages. The

elucidation of the epigenetic and metabolic characteristics of human

macrophages is particularly important for the translation from pre-

clinical studies to clinical applications. Further exploration of the

links between various types of PCD in macrophages and the links

between PCD and lipid metabolism may help to identify specific

markers of macrophages. This will not only contribute to the

development of drugs targeting macrophages for the treatment

of NAFLD, but will also be important for the non-invasive

diagnosis and assessment of the degree of liver inflammation and

disease progression.
TABLE 1 Potential small molecule drugs that regulate macrophage death to improve NAFLD.

Agent Model Target/pathway PCD Function Ref

Antcin A Mouse, high-fat diet;
LPS and Nigericin stimulated mouse liver Kupffer cell line

NLRP3 Pyroptosis Inhibition (138)

Benzyl
isothiocyanate

Mouse, HFCCD diet;
LPS with or without cholesterol crystals stimulated primary mouse
Kupffer cells,

NLRP3 Pyroptosis Inhibition (208)

CpG ODN T-BHP stimulated RAW264.7 cells ERK1/2 and Akt signaling pathway Apoptosis Inhibition (209)

Scoparone Mouse, MCD diet;
LPS stimulated RAW264.7 cells

ROS/P38/Nrf2 axis and PI3K/AKT/
mTOR pathway

Autophagy Promotion (210)

Ezetimibe Mouse, MCD diet;
LPS and palmitate stimulated THP-1 cells

NLRP3 inflammasone-IL1b pathway Autophagy Promotion (73)

Empagliflozin Mouse, high-fat diet and streptozotocin intraperitoneally injected AMPK/mTOR pathway Autophagy Promotion (206)

Glycyrrhetinic
acid

Mouse, high-fat diet and drinking water containing fructose;
Palmitic acid stimulated RAW264.7 and Kupffer cells

STAT3-HIF-1a pathway Autophagy Promotion (200)

MCD, methionine-choline deficient; HFCCD, high-fat diet containing cholesterol and cholic acid; LPS, lipopolysaccharide.
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