294 research outputs found

    Method Validation of Functional Magnetic Resonance Imaging and Electrophysiological Recording to Investigate Mechanisms of Vagus Nerve

    Get PDF
    Vagus nerve stimulation (VNS) is used clinically to treat epilepsy and depression, but its mechanism of action is unknown. Useful techniques to study this are functional magnetic resonance imaging (fMRI) and the local field potential (LFP). fMRI relies on oxygen use in the brain to show areas where neurons are active. The LFP is an electrical signal created by neuron action potentials and other current moving across cell membranes. The most information can be gained when the two methods are used simultaneously, however, this is difficult to do. This study seeks to validate the technique of fMRI-LFP as applied to study the mechanism of VNS. The rat is used as an animal model. Previously collected data is analyzed to determine effects of stimulation on respiration, since this will affect oxygen levels in the blood. Recording electrodes of different materials are tested to find the artifact size created in an MRI environment. Iridium electrodes were found to have the smallest artifact and therefore the best performance. It is unclear whether the stimulation used affects respiration, so a simultaneous fMRI-LFP experiment is needed to interpret fMR images. More work needs to be done before fMRI-LFP recordings can be taken during VNS

    Association Signals Unveiled by a Comprehensive Gene Set Enrichment Analysis of Dental Caries Genome-Wide Association Studies

    Get PDF
    Gene set-based analysis of genome-wide association study (GWAS) data has recently emerged as a useful approach to examine the joint effects of multiple risk loci in complex human diseases or phenotypes. Dental caries is a common, chronic, and complex disease leading to a decrease in quality of life worldwide. In this study, we applied the approaches of gene set enrichment analysis to a major dental caries GWAS dataset, which consists of 537 cases and 605 controls. Using four complementary gene set analysis methods, we analyzed 1331 Gene Ontology (GO) terms collected from the Molecular Signatures Database (MSigDB). Setting false discovery rate (FDR) threshold as 0.05, we identified 13 significantly associated GO terms. Additionally, 17 terms were further included as marginally associated because they were top ranked by each method, although their FDR is higher than 0.05. In total, we identified 30 promising GO terms, including 'Sphingoid metabolic process,' 'Ubiquitin protein ligase activity,' 'Regulation of cytokine secretion,' and 'Ceramide metabolic process.' These GO terms encompass broad functions that potentially interact and contribute to the oral immune response related to caries development, which have not been reported in the standard single marker based analysis. Collectively, our gene set enrichment analysis provided complementary insights into the molecular mechanisms and polygenic interactions in dental caries, revealing promising association signals that could not be detected through single marker analysis of GWAS data. © 2013 Wang et al

    Acute effects of vagus nerve stimulation parameters on gastric motility assessed with magnetic resonance imaging

    Full text link
    BackgroundVagus nerve stimulation (VNS) is an emerging bioelectronic therapy for regulating food intake and controlling gastric motility. However, the effects of different VNS parameters and polarity on postprandial gastric motility remain incompletely characterized.MethodsIn anesthetized rats (N = 3), we applied monophasic electrical stimuli to the left cervical vagus and recorded compound nerve action potential (CNAP) as a measure of nerve response. We evaluated to what extent afferent or efferent pathway could be selectively activated by monophasic VNS. In a different group of rats (N = 13), we fed each rat a gadolinium- labeled meal and scanned the rat stomach with oral contrast- enhanced magnetic resonance imaging (MRI) while the rat was anesthetized. We evaluated the antral and pyloric motility as a function of pulse amplitude (0.13, 0.25, 0.5, 1 mA), width (0.13, 0.25, 0.5 ms), frequency (5, 10 Hz), and polarity of VNS.Key ResultsMonophasic VNS activated efferent and afferent pathways with about 67% and 82% selectivity, respectively. Primarily afferent VNS increased antral motility across a wide range of parameters. Primarily efferent VNS induced a significant decrease in antral motility as the stimulus intensity increased (R = - .93, P < .05 for 5 Hz, R = - .85, P < .05 for 10 Hz). The VNS with either polarity tended to promote pyloric motility to a greater extent given increasing stimulus intensity.Conclusions and InferencesMonophasic VNS biased toward the afferent pathway is potentially more effective for facilitating occlusive contractions than that biased toward the efferent pathway.We investigated a possible differential effect of primarily afferent versus efferent cervical VNS on gastric motility under a range of VNS parameters. Gastric MRI data revealed that primarily afferent VNS induced stronger antral contractions relative to primarily efferent VNS. These results could serve as an index for optimizing VNS parameters for promoting gastric motility. Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155957/1/nmo13853_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155957/2/nmo13853.pd

    Network-Assisted Investigation of Combined Causal Signals from Genome-Wide Association Studies in Schizophrenia

    Get PDF
    With the recent success of genome-wide association studies (GWAS), a wealth of association data has been accomplished for more than 200 complex diseases/traits, proposing a strong demand for data integration and interpretation. A combinatory analysis of multiple GWAS datasets, or an integrative analysis of GWAS data and other high-throughput data, has been particularly promising. In this study, we proposed an integrative analysis framework of multiple GWAS datasets by overlaying association signals onto the protein-protein interaction network, and demonstrated it using schizophrenia datasets. Building on a dense module search algorithm, we first searched for significantly enriched subnetworks for schizophrenia in each single GWAS dataset and then implemented a discovery-evaluation strategy to identify module genes with consistent association signals. We validated the module genes in an independent dataset, and also examined them through meta-analysis of the related SNPs using multiple GWAS datasets. As a result, we identified 205 module genes with a joint effect significantly associated with schizophrenia; these module genes included a number of well-studied candidate genes such as DISC1, GNA12, GNA13, GNAI1, GPR17, and GRIN2B. Further functional analysis suggested these genes are involved in neuronal related processes. Additionally, meta-analysis found that 18 SNPs in 9 module genes had PmetaHLA-DQA1 located in the MHC region on chromosome 6, which was reported in previous studies using the largest cohort of schizophrenia patients to date. These results demonstrated our bi-directional network-based strategy is efficient for identifying disease-associated genes with modest signals in GWAS datasets. This approach can be applied to any other complex diseases/traits where multiple GWAS datasets are available

    RNA-Seq analysis implicates dysregulation of the immune system in schizophrenia

    Get PDF
    Background While genome-wide association studies identified some promising candidates for schizophrenia, the majority of risk genes remained unknown. We were interested in testing whether integration gene expression and other functional information could facilitate the identification of susceptibility genes and related biological pathways. Results We conducted high throughput sequencing analyses to evaluate mRNA expression in blood samples isolated from 3 schizophrenia patients and 3 healthy controls. We also conducted pooled sequencing of 10 schizophrenic patients and matched controls. Differentially expressed genes were identified by t-test. In the individually sequenced dataset, we identified 198 genes differentially expressed between cases and controls, of them 19 had been verified by the pooled sequencing dataset and 21 reached nominal significance in gene-based association analyses of a genome wide association dataset. Pathway analysis of these differentially expressed genes revealed that they were highly enriched in the immune related pathways. Two genes, S100A8 and TYROBP, had consistent changes in expression in both individual and pooled sequencing datasets and were nominally significant in gene-based association analysis. Conclusions Integration of gene expression and pathway analyses with genome-wide association may be an efficient approach to identify risk genes for schizophrenia

    Gastric colonisation with a restricted commensal microbiota replicates the promotion of neoplastic lesions by diverse intestinal microbiota in the Helicobacter pylori INS-GAS mouse model of gastric carcinogenesis

    Get PDF
    Objectives: Gastric colonisation with intestinal flora (IF) has been shown to promote Helicobacter pylori (Hp)-associated gastric cancer. However, it is unknown if the mechanism involves colonisation with specific or diverse microbiota secondary to gastric atrophy. Design: Gastric colonisation with Altered Schaedler's flora (ASF) and Hp were correlated with pathology, immune responses and mRNA expression for proinflammatory and cancer-related genes in germ-free (GF), Hp monoassociated (mHp), restricted ASF (rASF; 3 species), and specific pathogen-free (complex IF), hypergastrinemic INS-GAS mice 7 months postinfection. Results: Male mice cocolonised with rASFHp or IFHp developed the most severe pathology. IFHp males had the highest inflammatory responses, and 40% developed invasive gastrointestinal intraepithelial neoplasia (GIN). Notably, rASFHp colonisation was highest in males and 23% developed invasive GIN with elevated expression of inflammatory biomarkers. Lesions were less severe in females and none developed GIN. Gastritis in male rASFHp mice was accompanied by decreased Clostridum species ASF356 and Bacteroides species ASF519 colonisation and an overgrowth of Lactobacillus murinus ASF361, supporting that inflammation-driven atrophy alters the gastric niche for GI commensals. Hp colonisation also elevated expression of IL-11 and cancer-related genes, Ptger4 and Tgf-β, further supporting that Hp infection accelerates gastric cancer development in INS-GAS mice. Conclusions: rASFHp colonisation was sufficient for GIN development in males, and lower GIN incidence in females was associated with lower inflammatory responses and gastric commensal and Hp colonisation. Colonisation efficiency of commensals appears more important than microbial diversity and lessens the probability that specific gastrointestinal pathogens are contributing to cancer risk.National Institutes of Health (U.S.) (grant R01 AI37750)National Institutes of Health (U.S.) (grant R01 CA093405)National Institutes of Health (U.S.) (grant P30-ES02109)National Institutes of Health (U.S.) (grant P01 CA028842)National Institutes of Health (U.S.) (grant T32 RR07036

    Schizophrenia Gene Networks and Pathways and Their Applications for Novel Candidate Gene Selection

    Get PDF
    Background Schizophrenia (SZ) is a heritable, complex mental disorder. We have seen limited success in finding causal genes for schizophrenia from numerous conventional studies. Protein interaction network and pathway-based analysis may provide us an alternative and effective approach to investigating the molecular mechanisms of schizophrenia. Methodology/Principal Findings We selected a list of schizophrenia candidate genes (SZGenes) using a multi-dimensional evidence-based approach. The global network properties of proteins encoded by these SZGenes were explored in the context of the human protein interactome while local network properties were investigated by comparing SZ-specific and cancer-specific networks that were extracted from the human interactome. Relative to cancer genes, we observed that SZGenes tend to have an intermediate degree and an intermediate efficiency on a perturbation spreading throughout the human interactome. This suggested that schizophrenia might have different pathological mechanisms from cancer even though both are complex diseases. We conducted pathway analysis using Ingenuity System and constructed the first schizophrenia molecular network (SMN) based on protein interaction networks, pathways and literature survey. We identified 24 pathways overrepresented in SZGenes and examined their interactions and crosstalk. We observed that these pathways were related to neurodevelopment, immune system, and retinoic X receptor (RXR). Our examination of SMN revealed that schizophrenia is a dynamic process caused by dysregulation of the multiple pathways. Finally, we applied the network/pathway approach to identify novel candidate genes, some of which could be verified by experiments. Conclusions/Significance This study provides the first comprehensive review of the network and pathway characteristics of schizophrenia candidate genes. Our preliminary results suggest that this systems biology approach might prove promising for selection of candidate genes for complex diseases. Our findings have important implications for the molecular mechanisms for schizophrenia and, potentially, other psychiatric disorders

    Ultralow-current-density and bias-field-free spin-transfer nano-oscillator

    Get PDF
    The spin-transfer nano-oscillator (STNO) offers the possibility of using the transfer of spin angular momentum via spin-polarized currents to generate microwave signals. However, at present STNO microwave emission mainly relies on both large drive currents and external magnetic fields. These issues hinder the implementation of STNOs for practical applications in terms of power dissipation and size. Here, we report microwave measurements on STNOs built with MgO-based magnetic tunnel junctions having a planar polarizer and a perpendicular free layer, where microwave emission with large output power, excited at ultralow current densities, and in the absence of any bias magnetic fields is observed. The measured critical current density is over one order of magnitude smaller than previously reported. These results suggest the possibility of improved integration of STNOs with complementary metal-oxide-semiconductor technology, and could represent a new route for the development of the next-generation of on-chip oscillators.Comment: 18 pages, 4 figure

    CpG islands or CpG clusters: how to identify functional GC-rich regions in a genome?

    Get PDF
    Background CpG islands (CGIs), clusters of CpG dinucleotides in GC-rich regions, are often located in the 5\u27 end of genes and considered gene markers. Hackenberg et al. (2006) recently developed a new algorithm, CpGcluster, which uses a completely different mathematical approach from previous traditional algorithms. Their evaluation suggests that CpGcluster provides a much more efficient approach to detecting functional clusters or islands of CpGs. Results We systematically compared CpGcluster with the traditional algorithm by Takai and Jones (2002). Our comparisons of (1) the number of islands versus the number of genes in a genome, (2) the distribution of islands in different genomic regions, (3) island length, (4) the distance between two neighboring islands, and (5) methylation status suggest that Takai and Jones\u27 algorithm is overall more appropriate for identifying promoter-associated islands of CpGs in vertebrate genomes. Conclusion The generation of genome sequence and DNA methylation data is expected to accelerate greatly. The information in this study is important for its extensive utility in gene feature analysis and epigenomics including gene prediction and methylation chip design in different genomes

    Lamellipodin-Deficient Mice: A Model of Rectal Carcinoma

    Get PDF
    During a survey of clinical rectal prolapse (RP) cases in the mouse population at MIT animal research facilities, a high incidence of RP in the lamellipodin knock-out strain, C57BL/6-Raph1[superscript tm1Fbg] (Lpd[superscript -/-]) was documented. Upon further investigation, the Lpd[superscript -/-] colony was found to be infected with multiple endemic enterohepatic Helicobacter species (EHS). Lpd[superscript -/-] mice, a transgenic mouse strain produced at MIT, have not previously shown a distinct immune phenotype and are not highly susceptible to other opportunistic infections. Predominantly male Lpd[superscript -/-] mice with RP exhibited lesions consistent with invasive rectal carcinoma concomitant to clinically evident RP. Multiple inflammatory cytokines, CD11b+Gr1+ myeloid-derived suppressor cell (MDSC) populations, and epithelial cells positive for a DNA damage biomarker, H2AX, were elevated in affected tissue, supporting their role in the neoplastic process. An evaluation of Lpd[superscript -/-] mice with RP compared to EHS-infected, but clinically normal (CN) Lpd[superscript -/-] animals indicated that all of these mice exhibit some degree of lower bowel inflammation; however, mice with prolapses had significantly higher degree of focal lesions at the colo-rectal junction. When Helicobacter spp. infections were eliminated in Lpd[superscript -/-] mice by embryo transfer rederivation, the disease phenotype was abrogated, implicating EHS as a contributing factor in the development of rectal carcinoma. Here we describe lesions in Lpd[superscript -/-] male mice consistent with a focal inflammation-induced neoplastic transformation and propose this strain as a mouse model of rectal carcinoma.United States. National Institutes of Health (T32-OD010978)United States. National Institutes of Health (R01-OD011141)United States. National Institutes of Health (P30-ES002109)Massachusetts Institute of Technology. Ludwig Center for Molecular Oncology (U54- CA114462)National Cancer Institute (U.S.) (P30-CA14051
    corecore