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Abstract

Background: Schizophrenia (SZ) is a heritable, complex mental disorder. We have seen limited success in finding causal
genes for schizophrenia from numerous conventional studies. Protein interaction network and pathway-based analysis may
provide us an alternative and effective approach to investigating the molecular mechanisms of schizophrenia.

Methodology/Principal Findings: We selected a list of schizophrenia candidate genes (SZGenes) using a multi-dimensional
evidence-based approach. The global network properties of proteins encoded by these SZGenes were explored in the
context of the human protein interactome while local network properties were investigated by comparing SZ-specific and
cancer-specific networks that were extracted from the human interactome. Relative to cancer genes, we observed that
SZGenes tend to have an intermediate degree and an intermediate efficiency on a perturbation spreading throughout the
human interactome. This suggested that schizophrenia might have different pathological mechanisms from cancer even
though both are complex diseases. We conducted pathway analysis using Ingenuity System and constructed the first
schizophrenia molecular network (SMN) based on protein interaction networks, pathways and literature survey. We
identified 24 pathways overrepresented in SZGenes and examined their interactions and crosstalk. We observed that these
pathways were related to neurodevelopment, immune system, and retinoic X receptor (RXR). Our examination of SMN
revealed that schizophrenia is a dynamic process caused by dysregulation of the multiple pathways. Finally, we applied the
network/pathway approach to identify novel candidate genes, some of which could be verified by experiments.

Conclusions/Significance: This study provides the first comprehensive review of the network and pathway characteristics of
schizophrenia candidate genes. Our preliminary results suggest that this systems biology approach might prove promising
for selection of candidate genes for complex diseases. Our findings have important implications for the molecular
mechanisms for schizophrenia and, potentially, other psychiatric disorders.
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Introduction

Schizophrenia (SZ) is a severe mental disorder affecting ,1% of

the population [1]. Family, twin, and adoption studies strongly

support that genetic factors play an important role in the etiology of

schizophrenia. Recently, numerous genetic studies, including

linkage scans and their meta-analyses, candidate gene association

analyses, gene expression and genome-wide association studies

(GWAS), have identified specific genes/markers and chromosomal

regions for the disease [2,3,4,5]. Though these studies present a low

replication, more evidence supports that the etiology of schizophre-

nia involves, rather than single genes/loci with large effect, many

genes, each of which contributes a small risk, interacting with each

other or with environmental risk factors to cause schizophrenia [3].

In this study we hypothesize that these small effects are organized in

networks/pathways and these schizophrenia disease networks/

pathways have important features that are distinct from those seen

in other diseases such as cancer or Mendelian genetic diseases.

It is increasingly possible to investigate biological networks/

pathways of a complex disease at the systems level because of the

rapid accumulation of genetic and biological information in the past

decade. Recent studies reveal striking correlations between the

functions of gene products or gene networks and the features of the

diseases they cause [6,7]. The correlation between the attributes of

disease genes is more extensive and stronger than previously thought.

This was revealed in an analysis of Gene Ontology (GO) terms and a
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gene expression pattern of .1,600 genes causing different types of

diseases [8]. Further, Goh et al [9] found that the majority of disease

genes are nonessential and do not encode hub proteins (highly

connected proteins) in protein networks. This pattern was different

from that previously thought and that observed in cancer genes.

Except for only a few diseases such as cancer [10], there has been no

systematic investigation of the network properties of a complex

disease by examining the whole human interactome. Specifically, we

have been unable to find such a detailed examination of features for

schizophrenia associated genes.

In this study, we explored network characteristics of 160

schizophrenia candidate genes (SZGenes) that were prioritized by

a multi-dimensional evidence-based gene ranking approach [11].

Their global network characteristics and local network environment

indicate that SZGenes have their own network properties compared

to the cancer genes. We further identified schizophrenia enriched

pathways, explored their ability to interact with or influence each

other (crosstalk), and constructed the first version of a schizophrenia

molecular network (SMN). Finally, we applied our networks/

pathways analysis to identify novel candidate genes. Our prelim-

inary experimental verification suggests that this approach might be

promising. This study provides useful insights into the molecular

mechanisms of schizophrenia at the systems biology level.

Results

Global network properties of schizophrenia candidate
genes (SZGenes)

To date, no gene has been confirmed to be the cause of

schizophrenia. In this study, we used 160 SZGenes that were

prioritized based on a multi-dimensional evidence-based gene

ranking approach [11]. These genes were selected by integrative

evidence from linkage, association, gene expression and literature

search. Evaluations from several methods such as independent

GWAS P values, gene expression features, and GO annotations

suggest these genes are useful for follow up bioinformatics analysis

(Text S1, Table S1). For comparison, we compiled four other gene

sets: cancer genes, essential genes, neurodevelopment-related

genes (NeuroGenes) and non-disease, non-essential genes (NDE-

Genes) (see details in Text S1).

To explore the topological network properties of five gene sets, we

first reconstructed a human protein-protein interaction (PPI)

network (the human interactome, Text S1). In the human PPI

network, nodes represent the proteins encoded by genes and edges

(links) represent the interactions identified by experiments. Second-

ly, we mapped the proteins encoded by the five gene sets onto the

whole network, and then calculated the numbers of interactors

(namely, degree or connectivity) of nodes, and the shortest-path

distances (number of edges from one node to another). They are the

basic topological network measures, which provide insights into the

architecture of the nodes of interest (i.e., proteins encoded by

SZGenes) in the whole network (see Materials and Methods) [12].

Moderate connectivity (degree) of SZGenes. Figure 1

displays degree distribution and the average degree of the nodes in

each gene set. The average degree of SZGenes was 14.34, which

was significantly higher than that of NeuroGenes (10.88, Wilcoxon’s

test, P = 0.04) or that of NDEGenes (8.17, P = 8.261028) but

significantly lower than that of essential genes (18.39, P = 0.02) or

that of cancer genes (26.69, P = 6.361027). SZGenes had an

intermediate connectivity when compared to the four other gene

Figure 1. Degree distributions and average degrees (vertical lines) of five gene sets. The Y-axis represents the proportion of proteins
having a specific degree. The empirical P value in the inserted table indicates whether the observed average degree in a gene set is random from the
human interactome.
doi:10.1371/journal.pone.0011351.g001

Schizophrenia Network/Pathways
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sets, indicating that SZGenes often encode proteins that are

moderately connected, rather than highly connected in the human

interactome. This observation of higher degree in SZGenes and

cancer genes than in NeuroGenes or NDEGenes also supports a

recent report that disease genes tend to have higher degrees than

non-disease genes [10]. Moreover, proteins encoded by cancer

genes, essential genes and SZGenes had significantly more direct

interactions than randomly selected nodes (empirical P values are 0,

0, 0.02, respectively; here P = 0 means no randomly selected node

set had a higher average connectivity than the observed values of

cancer genes or essential genes), while proteins encoded by

NDEGenes had the opposite characteristic (empirical P = 1.00, all

randomly selected node sets had a higher average degree than the

observed values of NDEGenes).

The degree distributions of these five gene sets were strongly

right-skewed (Figure 1). Most nodes had low degree while only a

portion of nodes had a high degree, which were often defined as

‘‘hubs’’ in network analysis. There are multiple ways to define

hubs. Here, we applied the method in Yu et al [13] to define hubs.

We first plotted the degree distribution of all nodes in the human

interactome and then identified the point where the distribution

began to straighten out. The point corresponded to degree 13.

According to this cutoff, there were 2,165 nodes classified into

hubs, which accounted for 20.7% of all nodes in the interactome.

This proportion was consistent with the cutoff used in the yeast

interactome [14]. The proportion of hub proteins was 29.0%

among SZGenes, which was smaller than that of cancer genes

(49.4%) or essential genes (38.1%) but larger than that of

NeuroGenes (23.9%) or NDEGenes (16.6%). Figure S1 summa-

rizes the detailed distributions of proteins encoded by these gene

sets by a degree interval of 3. Among the five gene sets, the

proportion of SZGenes was the highest for degree intervals 4–6

and 7–9. For degree intervals 10–12 and 13–17, the proportion of

SZGenes was slightly smaller than that of cancer genes and similar

to that of essential genes. When we summarized degree intervals

4–17, the proportion of SZGenes was 50.0%, higher than any of

the other four gene sets (cancer genes: 47.5%, essential genes:

44.8%, NeuroGenes: 36.6%, and NDEGenes: 38.7%). Thus, the

average degree and degree distribution consistently indicate

intermediate connectivity of schizophrenia candidate genes.

Intermediate shortest-path distance of SZGenes. In a

network, shortest-path distance measures how many nodes need to

pass through from one node to another [12]. Considering the two

nodes might be our interest or not, we calculated shortest-path

distance in two ways: characteristic shortest-path distance and

global centrality. Characteristic shortest-path distance provides a

general view of the relationship between the nodes of interest and

all other nodes in the network while global centrality, which

calculates the shortest path distance between two nodes belonging

to the same gene set of interest, provides a measure of the general

view of the interest nodes in the whole network. The detailed

distributions and the average distance values of the five genes sets

are shown in Figure S2.

Similar to the degree measurement, SZGenes had an interme-

diate average characteristic shortest-path distance and global

centrality among the five gene sets (Figure S2). For example, the

average characteristic shortest-path distance of SZGenes was 3.88,

greater than that of cancer genes (3.63, Wilcoxon’s test,

P = 5.461027) or that of essential genes (3.76, P = 0.01) but less

than that of NDEGenes (3.98, P = 0.001) or NeuroGenes (3.93,

P = 0.09). The difference in global centrality between SZGenes and

the other four gene sets was even stronger than that in characteristic

shortest-path distances, e.g., the P values by the same test ranged

from ,2.2610216 to 2.761024. These comparisons indicate that

biological signal transferring from one SZGene to another SZGene

is faster than that between control genes (e.g. non-disease genes) but

slower than that between genes in the essential or cancer gene sets.

Therefore, these results imply that perturbation among SZGenes

spreads with intermediate efficiency throughout the human protein

interactome, which further suggests the damage of gene mutations

related to schizophrenia might be weaker than that of mutations in

some essential or cancer genes.

Schizophrenia-specific network
To explore the organization and the environment of the

proteins encoded by SZGenes, we extracted the schizophrenia

specific subnetwork (SZ-specific network) from the whole network

using SZGenes and the Steiner minimal tree algorithm [15]. For

comparison purpose, we extracted cancer-specific subnetwork

using cancer genes and the same algorithm. The cancer

subnetwork is shown in Figure S3.

Topological properties of the SZ-specific network. The

SZ-specific network had 233 nodes and 436 edges (links) while the

cancer-specific network had 324 nodes and 844 edges (Figure 2A,

Table S2). Among the 160 SZGenes, 135 (75.0%) were included in

the SZ-specific network, indicating a high coverage of SZGenes in

this subnetwork. However, the coverage was even higher in the

cancer-specific network, which included 265 of the 324 cancer

genes (94.6%). The average degree of the SZ-specific network

(3.74) was lower than that of cancer network (5.21), and

consistently, the average shortest-path distance of the SZ-specific

network (4.32) was greater than that of the cancer network (3.76)

(Table S2). These comparisons revealed that, relative to cancer

genes, SZGenes were weakly connected and had a lower efficiency

of navigability in the whole interactome. We further tested

randomness of the SZ-specific and cancer-specific networks using

the Erdos-Renyi model [16] (see Materials and Methods). The test

revealed that both gene sets formed non-random networks and

had a strong tendency to form clusters, as their shortest paths were

significantly different from that of random networks and clustering

coefficients were significantly higher than the corresponding

random networks (P values = 0, no any random network

outperformed the observed SZ- or cancer-specific network).

SZGenes distribute peripherally in SZ-specific

network. More than half of the genes (135/233 = 57.9%) in

the SZ-specific network were SZGenes and they formed 44 direct

edges (10.1% of the total 436 edges), indicating SZGenes might

approach each other directly or through other nodes to form a

small-world network. In a complex network, the ability of nodes to

communicate may reflect the network’s degree of robustness and

error tolerance [17]. Here, we used the k-clique clustering method

provided by CFinder software [18], which is a popular network

analysis method, to examine nodes’ distributions. This method

identifies the maximally complete subgraphs (k-cliques, in which

any two nodes have edges) in the networks and the communities,

in which two k-cliques share exactly k-1 nodes. We examined

cliques by five k values (k = 3, 4, 5, 6, 7). When k increased, the

number of nodes forming clusters decreased and, interestingly, the

proportion of SZGenes identified in the protein communities

decreased (Table S3). For example, 28.6% of SZGenes formed

communities when k = 3, but only 14.3% when k = 7. This result

indicates that SZGenes tend not to appear in the most tightly

connected communities. The opposite pattern was observed in

cancer genes, which was consistent with a previous report [10].

For k = 3, we found 70 cliques involving 63 proteins. These

cliques could form a large closely connected subnetwork

(Figure 2B). After we removed this subnetwork from the SZ-

specific network, connections among the remaining nodes became

Schizophrenia Network/Pathways
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very loose and nearly corrupt (Figure 2C). Among these 63

proteins, 18 belong to SZGenes, which accounted for 13.3% of the

SZGenes in the SZ-specific network. By comparison, we observed

that 118 (44.5%) of the 265 cancer genes in the cancer-specific

network could form the clusters by 3-clique. The comparison

indicates that SZGenes tend to distribute peripherally in the

disease specific network rather than reside in the center of clusters,

a feature observed in cancer genes [10].

Schizophrenia enriched pathways
Pathways that are statistically enriched in a set of disease genes

may provide important cellular process information for our

Figure 2. Schizophrenia-specific network. SZGenes are labeled in red and non-SZGenes in blue. Node area corresponds to its degree in the
human interactome. Node shape indicates its cellular location: ellipse for cytoplasm, diamond for extracellular space, triangle for nucleus, square for
plasma membrane, and hexagon for unknown location. (A) The extracted schizophrenia-specific network from the human interactome. It has 233
nodes and 436 edges. (B) Network for the 63 nodes that could form clusters by CFinder. (C) Networks for the 170 nodes that could not form clusters
by CFinder.
doi:10.1371/journal.pone.0011351.g002

Schizophrenia Network/Pathways
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understanding of the molecular pathology of the disease. We

examined schizophrenia enriched pathways (SZ-enriched path-

ways) using the Fisher’s exact test implemented in the Ingenuity

Pathway Analysis (IPA) (see Materials and Methods). Further, we

explored the interactions and crosstalk between SZ-enriched

pathways by taking advantage of both pathway and interaction

network data used in this study.
Twenty-four significantly enriched pathways for

SZGenes. We identified 24 pathways that were significantly

enriched for SZGenes (P value ,0.01) (Table S4). Among these 24

pathways, 9 (37.5%) were directly related to neurodevelopment.

This supports the commonly accepted notion of neuro-

developmental abnormalities in schizophrenia [19]. Interestingly,

a recent study identified 15 pathways that were overrepresented by

genes disrupted in schizophrenia cases versus controls, and these

pathways included 5 of our 9 neurodevelopment-related pathways

[20]. Four neurotransmitter-related pathways stood out at the top

of the list ranked by the significance level: glutamate receptor

signaling (ranked 1st), serotonin receptor signaling (2nd), GABA

receptor signaling (5th) and dopamine receptor signaling (7th).

Besides, two pathways, synaptic long-term depression and synaptic

long-term potentiation, were in the enriched pathway list. These

two pathways are important for synaptic plasticity development

and related to schizophrenia [21].

It was worth noting that, among the 24 pathways, 8 were

involved in or were related to the immune system. This supports

the autoimmune hypothesis of schizophrenia [22]. Recent studies

have been accumulating evidence of autoimmune-related genes

for the risk of schizophrenia [4,23]. For example, several inter-

leukin genes (IL2, IL3, IL4) have been implicated for schizophrenia

[23,24]. Moreover, we found 3 retinoic X receptor (RXR) related

signaling pathways: LXR (liver X receptor)/RXR activation, FXR

(farnesoid X receptor)/RXR activation, and PPAR (peroxisome

proliferators-activated receptor) signaling. RXR acts as a master

regulator during ligand-induced transcription activities [25].

Retinoic acid (RA), a metabolic product of retinol, is involved in

the development, regeneration and maintenance of the nervous

system [21]. The disruption of retinoid has been implicated in the

development of schizophrenia [26]. In summary, these enriched

pathways suggest that autoimmune and metabolic systems, which

may interact with environmental factors, have important roles in

the etiology of schizophrenia.

Crosstalk among SZ-enriched pathways. Besides

searching schizophrenia specific pathways, we took a further step

by exploring the interactions and crosstalk between pathways

involving in schizophrenia. This analysis assumes that two

pathways are likely crosstalk if significantly more proteins or

protein interactions are detected between two pathways than

expected by chance [27]. There were a total of 276 pathway pairs

(links) from the 24 enrich pathways. We found 69 were statistically

significantly linked (P#0.01) based on the statistical test described

in Materials and Methods.

Figure 3 shows the crosstalk of these significantly linked

pathways. Two clusters were roughly identified based on the level

of interactions between the pathways. One cluster consisted of 9

pathways including 6 neurodevelopment and 3 common signaling

pathways, as shown in the left part in Figure 3. The second cluster,

as shown in the right part of Figure 3, had 15 pathways, including

1 common signaling pathway, 3 neuronal signaling pathways, 8

immune system-related pathways and 3 RXR-related pathways.

The crosstalk among these 15 pathways was much stronger than

that in the first cluster. These two clusters were connected by three

links. One link, which was between synaptic long-term depression

and Fc epsilon RI signaling, appears interesting because it

connects the immune-related system to brain development.

Schizophrenia molecular network (SMN)
To have an overview of the protein-protein interactions and

molecular regulations, we constructed a schizophrenia molecular

Figure 3. Crosstalk among SZ-enriched pathways. Nodes represent pathways and edges represent crosstalk between pathways. Node area
corresponds to its score, which is 210 logarithm of Fisher’s exact test P value. Red nodes: neurodevelopmental pathways; blue nodes: common
signaling pathways; green nodes: immune-related pathways; and grey nodes: RXR (retinoic X receptor) related pathways.
doi:10.1371/journal.pone.0011351.g003

Schizophrenia Network/Pathways
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network (SMN). We integrated SZ-enriched pathways with the

SZ-specific network, and also enhanced the interactions/regula-

tions by literature surveys. Figure 4 displays the SMN, which

includes four neurotransmitters and their transmembrane recep-

tors (neurotransmitter pathways) and their downstream interac-

tions such as activations, inhibitions, and feedback regulations in

the cellular system. It also includes many common cellular

processes, such as calcium signaling, G-protein coupled receptor

signaling, cAMP-mediated signaling, and MAPK signaling

pathways. The network also describes the secretion process of

small molecules like dopamine; the balance of several effectors, like

the inhibition and excitation effects of GABA and glutamate; and

the cooperation of regulation via feedback loops after the outer-

membrane signal had been transmitted through the membrane

into the cellular system.

This network has many feedback loops linking many biological

processes. Among those loops, the one from N-methyl-D-aspartate

subtype glutamate receptor (NMDAR) to a-amino-3-hydroxy-5-

methylisoxazole-4-propionic acid subtype glutamate receptor

(AMPAR) appeared to be the shortest. The NMDAR-AMPAR

signaling cascade has an important role in apoptosis [28].

Moreover, we observed that those pathways were interlinked via

PKC and AKT, suggesting their important roles in the molecular

mechanisms of schizophrenia. Both PKC and AKT are protein

kinases that are essential in many pathways controlling cell growth

and apoptosis. A recent study found a direct link between PKC

and AKT [29], which enhanced the crosstalk of the pathways in

this molecular network. Overall, this investigation revealed that

schizophrenia is a dynamic process caused by dysregulation of

multiple pathways that are in crosstalk.

Application: identification of novel schizophrenia
candidate genes

To demonstrate that gene network/pathway analysis is useful in

complex diseases, we applied two strategies to select novel

candidate genes based on our network/pathway analysis and

then performed some experimental verifications.

The first strategy was based on schizophrenia subnetwork

analysis. Our SZ-specific network had 233 genes including 135

SZGenes and 98 new genes (non-SZGenes). For each gene in this

network, we identified its smallest P value using the CATIE [30]

and GAIN [31] GWAS markers that mapped to these genes and

Figure 4. Schizophrenia molecular network (SMN). This network was constructed by using schizophrenia related pathways, protein-protein
interactions and literature survey. SZGenes are in red text and neurotransmitters in pink background. The enriched pathways are highlighted in the
boxes with a blue and pink background. Several feedback loops are identified including those highlighted with red lines.
doi:10.1371/journal.pone.0011351.g004

Schizophrenia Network/Pathways
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used the P value to represent its significance signal. CATIE and

GAIN were the only two publicly available GWAS datasets for

schizophrenia when we conducted this study. Mapping SNPs,

identification of the smallest P value of each gene, and limitation of

this approach was described in our previous study [11]. There

were 16,892 genes that appeared in both the CATIE and GAIN

studies. Among them, 1,745 had the smallest P values ,0.05 in

both the studies. Among the 233 genes in the SZ-specific network,

we found 47 whose P values were ,0.05 in both of the CATIE

and GAIN studies. We next tested whether this observation was by

chance. We first randomly selected 1,000 sets of 233 genes from

the 16,892 common genes. For each random set, we counted the

number of genes having P values ,0.05 in both the CATIE and

GAIN datasets (n). For these 1,000 sets, we counted the number of

sets whose n is not less than 47 (m). Then, we calculated empirical

P values by m/1,000. We repeated this randomization 10 times to

estimate the confidence of this approach. We obtained an

empirical P = 0, that is, we could not find any random gene set

having .47 genes whose P values ,0.05, as observed in our SZ-

specific network. This evaluation suggests that genes in our SZ-

network are likely significantly more enriched with small P values

compared to the overall genome. However, caution should be used

in this comparison because this analysis has a bias towards gene

length. The SZGenes are overall longer than other human genes,

thus, they might have more chance to have small P values,

assuming GWAS markers were distributed approximately evenly

in the human genome.

The evaluation done by using independent GWAS markers

indicates that our network analysis may identify a set of new genes

with an enriched association signal. Among the 47 genes whose P

values were ,0.05 in both the CATIE and GAIN datasets, 16

were non-SZGenes. We considered these 16 genes as potential

candidate genes (Table S5). Most of these genes had not been

reported in schizophrenia association studies when we started to

collect SZGenes. Next, we extracted 5 subnetworks based on the

direct interaction of the 16 non-SZGenes with the nodes encoded

by SZGenes and their GWAS P values (Figure S4A). This

procedure resulted in six potential novel candidate genes (DLG2,

EGFR, ESR1, GRIK2, PRKCB1 and ZBTB16). Among them, two

genes (EGFR and ESR1) were included for genotyping in our

independent project involving 180 genes and other four genes not.

Both had markers with P,0.05 (unpublished data). Among the 66

SNPs genotyped in EGFR, six had P,0.05 and the smallest P value

was 0.003481. Among the 37 SNPs genotyped in ESR1, three had

P,0.05 and the smallest P value was 0.001637. Although no

marker passed stringent Bonferroni multiple testing and further

analysis (e.g., haplotype based analysis) and replication is needed,

this preliminary data suggests that our candidate gene selection

approach might be effective. Interestingly, for ESR1, we did not

find any association study reported for schizophrenia when we

collected and analyzed data, but we found a recent positive

association study [32] during our manuscript preparation. This

study further supports our approach.

The second strategy was based on pathway analysis with a

combination of network information. Among the 24 SZ-enriched

pathways, glutamate receptor signaling pathway ranked at the top.

We extracted the glutamate receptor signaling subnetwork from

the human interactome using the Steiner minimal tree algorithm.

This subnetwork included 18 genes (Figure S4B), 12 of which were

among the 160 SZGenes while the other 6 (DLG2, FLNA, GRB2,

GRIK2, HSPA5 and JUB) were non-SZGenes. Among them,

GRIK2 has been reported to have positive association with

schizophrenia while others have not. GRB2 locates in the center

of the subnetwork, which indicates that it might play an important

role in the pathway. Among the four well-known neurotransmitter

pathways (glutamate receptor signaling, GABA receptor signaling,

serotonin receptor signaling and dopamine receptor signaling),

GRB2 appeared in all the four pathways and HSPA5 in three

pathways, and the interaction between GRB2 and HSPA5

appeared in three pathways. Considering the gene length,

functions and chromosome location, we finally selected two genes

(GRB2 and HSPA5, both of which are not long) for follow-up

experimental verification. Using the Haploview program, we

tested the association of seven tagSNPs in gene GRB2 and two

tagSNPs in gene HSPA5 in our Irish Case-Control Study of

Schizophrenia (ICCSS) sample (1,021 cases and 626 controls)

[33]. Interestingly, for GRB2, five SNPs had P,0.05 and the other

two SNPs whose P values were close to 0.05 (unpublished data).

The two smallest P values (0.000253 and 0.00313) were significant

even after Bonferroni correction. We did not observe any

significant signals for the two markers in HSPA5. Although more

samples and markers are needed for verification, these preliminary

results suggest that our network and pathway-based approach for

candidate gene selection might be promising.

Discussion

For complex diseases such as schizophrenia, uncovering

susceptibility genes is a challenging but important task. Traditional

linkage and association studies have been the primary approaches

for this challenge during the last 15 years. Although many loci and

genes have been suggested to be linked to schizophrenia, a low

replication rate and a lack of functional variants to the risk to

schizophrenia have greatly weakened our confidence in the

common disease/common variant hypothesis. Furthermore,

GWA studies for schizophrenia and other psychiatric disorders

have not been as successful as in other diseases or traits such as

cancer, body mass, and height [3,30]. In this study, we

hypothesized that the risk for schizophrenia may accumulate

among schizophrenia genes that interact through their proteins or

in their biological pathways and explored this hypothesis using a

systems biology approach. However, this analysis is still prelim-

inary as no genes have been confirmed to be casual in

schizophrenia, many genes in the SZGene list may be false

positives, and the human interactome and pathway databases are

neither complete nor error- or bias-free.

Both schizophrenia and cancer are complex diseases. Our

examination of schizophrenia and cancer specific networks

revealed major differences, suggesting different effects of genes in

causing these two types of diseases. Cancer genes interact more

strongly with each other and are more likely to cluster in the

network than schizophrenia genes. This feature might be an

artifact of data bias: (1) cancer genes might have been studied

more by investigators regarding fighting cancers; and (2) although

our evaluation suggested SZGenes may be useful, there are likely

more false positives in SZGenes than cancer genes and these false

positives tend to be non-disease genes [11]. To address the first

bias, we examined the properties of the homologous genes in yeast.

We downloaded the yeast PPI data from BioGRID [34]. The yeast

interaction data is not biased towards cancer or schizophrenia.

The same conclusion could be drawn using yeast data. For

example, we found a stronger PPI network for cancer homologous

genes in yeast. It is worth noting that some genes are associated

with both schizophrenia and cancer. It would be interesting to

further investigate whether their roles are different in the

biological networks/pathways to the diseases.

Despite these limitations, this study provides the first compre-

hensive view of the network and pathway characteristics of

Schizophrenia Network/Pathways
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schizophrenia candidate genes. These characteristics demonstrate

that schizophrenia is a complex disorder that involves many genes

and their interactions. Each of these genes may contribute a small

effect to the pathology of schizophrenia. We propose that combing

markers/genes at the network or pathway level has greater power

to detect an association with schizophrenia than the traditional

methods. In this scenario, each mutation might have a different

degree of risk effect. Thus, prior information about the mutations

in some genes in a network/pathway is helpful for detecting signals

in other genes in the same network/pathway. This signal detection

is helpful for biomarker discovery and the design of molecular

diagnosis. Our preliminary experimental work suggests that this

approach is promising.

One recent GWA study indicates that schizophrenia shares

substantial polygenetic component with bipolar disorder, another

mental disorder [3]. One review of genetic vulnerability to different

substances implicates several regions and genes in addiction are also

associated with various substances such as alcohol dependence,

nicotine, cocaine, opioids, and heroin [35]. The review listed 62

addiction genes [35]. For these genes, we found similar network

properties (e.g., a moderate connectivity and intermediate shortest-

path distance) and some common neurodevelopment-related

pathways that were observed for SZGenes. Overall, the accumu-

lating data and information implicates common genetic compo-

nents and their interactions in neuropsychiatric disorders.

Materials and Methods

Global network properties and significance
In a protein-protein interaction (PPI) network, a node represents

a protein and an edge represents an interaction between two nodes.

For node i in the whole human protein-protein interaction network,

we applied two network topological measures to assess the network

characteristics of each gene set: (1) degree, the number of links of

node i in the network [12] and (2) shortest-path length, the number

of links of the shortest path traveling from node i to another node.

The average shortest-path length measures overall navigability of a

network. We extended the measurement of shortest-path length in

two ways: (1) characteristic shortest-path distance, which was the

shortest-path distance from a gene to another gene in the whole

network, and (2) global centrality, which was the shortest-path

length between two proteins both belonging to the same gene list,

allowing transitions through proteins in other categories.

To test the significance of the network properties of a gene set,

we developed an empirical re-sampling approach. For each gene

set of interest having n genes, we randomly selected n genes from

all available proteins (i.e., random gene set) and calculated their

average degree and characteristic shortest-path distance. We

repeated this re-sampling 1,000 times. To estimate the significance

of average degree observed in the gene set of interest, we counted

the number (Ni) of random gene sets whose average degree was

higher than the observed average degree and then calculated an

empirical P value = Ni/1,000. Similarly, for shortest-path distance,

we counted the number (Mi) of random gene sets whose average

shortest-path distance is smaller than the observed distance and

then calculated an empirical P value = Mi/1,000.

Construction of SZ-specific network
To extract a network for SZGenes, we first reconstructed a PPI

network (the human interactome, Text S1). Among the 160

SZGenes, 137 were mapped into the human interactome. We

extracted the subnetwork as a SZ-specific network from the whole

human interactome by using Steiner minimal tree algorithm [15].

In this algorithm, the subnetwork starts with an interesting protein

set and expands step-by-step until all interesting proteins are

netted. Then, the network is simplified to a minimum net

containing SZGenes by shortest-path lengths among interest

proteins. To test the non-randomness of the subnetwork, we first

generated 1,000 random networks with the same number of nodes

and links in the SZ-specific network. We applied the Erdos-Renyi

model in the R igraph package to the randomization process.

Then we estimated the significance of non-randomness by

examining network measures such as average degree, average

shortest-path distance and clustering coefficient. The empirical P

values were calculated similarly as in the subsection above. For

comparison, we obtained a cancer-specific network and estimated

the significance of its non-randomness by running 1,000 random

networks, like we did for the SZ-specific network.

SZ-enriched pathways and their crosstalk
We searched the pathways of 160 SZGenes in the Ingenuity

System (http://www.ingenuity.com) and found 101 canonical

pathways. We further applied the following two criteria to identify

SZ-enriched pathways: 1) the score, which is -10 logarithm of

Fisher’s exact test P value, in a pathway is .2; and 2) the number of

SZGenes involved in a pathway is .5. For pathway crosstalk, we

considered both common proteins (nodes) and common interactions

(edges) between any two pathways. For any pair of SZ-enriched

pathways, we calculated a 262 contingency table, which includes

four counts: n, N-n, r, R-r where n is the number of common nodes

(or links) between two tested pathways in the pair; N is the number

of total nodes (or links) of the two tested pathways, r is the average

number of common nodes (or links) between all possible pairs of SZ-

enriched pathways and R is the average number of proteins (or links)

of all possible pairs of SZ-enriched pathways. For nodes (or links),

we used Fisher’s exact test to calculate P values and adjusted them

by false discovery rate (FDR) using Benjamini-Hochberg procedure

[36]. Therefore, for each pair of the pathways, we calculated two P

values (Pnodes and Plinks). We choose the smaller P value as the criteria

of pathway crosstalk. If the smaller P value is less than 0.01, we

regarded the two pathways significantly have crosstalk.

Supporting Information

Text S1 Detailed Materials and Methods. In this Supporting

Information Text S1, we include additional technical information.

Found at: doi:10.1371/journal.pone.0011351.s001 (0.06 MB

DOC)

Table S1 GO terms significantly enriched in SZGenes (schizo-

phrenia genes) compared to NDEGenes (non-disease non-essential

genes).

Found at: doi:10.1371/journal.pone.0011351.s002 (0.10 MB

DOC)

Table S2 Comparison of genes distributed in SZ-specific

network with those in cancer-specific network.

Found at: doi:10.1371/journal.pone.0011351.s003 (0.04 MB

DOC)

Table S3 Comparison of the number of nodes forming clusters

by different K-cliques in schizophrenia and cancer gene

subnetworks.

Found at: doi:10.1371/journal.pone.0011351.s004 (0.03 MB

DOC)

Table S4 Pathways significantly enriched for schizophrenia

candidate genes.

Found at: doi:10.1371/journal.pone.0011351.s005 (0.05 MB

DOC)
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Table S5 Information of 16 genes in association studies and

GWA studies.

Found at: doi:10.1371/journal.pone.0011351.s006 (0.05 MB

DOC)

Figure S1 Degree distribution of five gene sets. Y-axis represents

the proportion of proteins having a specific degree.

Found at: doi:10.1371/journal.pone.0011351.s007 (0.31 MB TIF)

Figure S2 Shortest-path distance of five gene sets. (A) Charac-

teristic shortest-path distance distribution. Y-axis is the proportion

of proteins having a specific characteristic shortest-path distance.

The average characteristic shortest-path distance and its empirical

P value for randomness from the human interactome are shown in

the table inside. (B) Global centrality distribution. Y-axis is the

proportion of proteins having a specific global centrality. Vertical

line represents the average global centrality of each gene set, which

is also summarized in the inside of the figure.

Found at: doi:10.1371/journal.pone.0011351.s008 (0.92 MB TIF)

Figure S3 Cancer-specific network. Cancer genes are labeled in

red and non-cancer genes in blue. Node area corresponds to its

degree in the human interactome. Node shape indicates its cellular

location: ellipse for cytoplasm, diamond for extracellular space,

triangle for nucleus, square for plasma membrane, and hexagon

for unknown location.

Found at: doi:10.1371/journal.pone.0011351.s009 (0.67 MB TIF)

Figure S4 Selection of novel schizophrenia candidate genes.

Nodes in red denote SZGenes and nodes in grey and green denote

non-SZGenes. (A) Direct interactors of five potential schizophre-

nia candidate genes (in green), which are non-SZGenes but had P

values ,0.05 in both GAIN and CATIE GWA studies. In these

subnetworks, the nodes whose genes having P value ,0.05 in

GAIN are labeled in red asterisk and having P value ,0.05 in

CATIE are labeled in blue asterisk. (B) An extracted glutamate

receptor signaling subnetwork.

Found at: doi:10.1371/journal.pone.0011351.s010 (0.35 MB TIF)
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