149 research outputs found

    Unique caudal plumage of Jeholornis and complex tail evolution in early birds

    Get PDF
    The Early Cretaceous bird Jeholornis was previously only known to have a distally restricted ornamental frond of tail feathers. We describe a previously unrecognized fan-shaped tract of feathers situated dorsal to the proximal caudal vertebrae. The position and morphology of these feathers is reminiscent of the specialized upper tail coverts observed in males of some sexually dimorphic neornithines. As in the neornithine tail, the unique “two-tail” plumage in Jeholornis probably evolved as the result of complex interactions between natural and sexual selective pressures and served both aerodynamic and ornamental functions. We suggest that the proximal fan would have helped to streamline the body and reduce drag whereas the distal frond was primarily ornamental. Jeholornis reveals that tail evolution was complex and not a simple progression from frond to fan.Fil: O'Connor, Jingmai. Chinese Academy Of Sciences. Institute of Vertebrate Paleontology and Paleoanthropology; República de ChinaFil: Wang, Xiaoli. Linyi University; ChinaFil: Sullivan, Corwin. Chinese Academy Of Sciences. Institute of Vertebrate Paleontology and Paleoanthropology; República de ChinaFil: Zheng, Xiaoting. Linyi University; China. Shandong Tianyu Museum of Nature; ChinaFil: Tubaro, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales; ArgentinaFil: Zhang, Xiaomei. Shandong Tianyu Museum of Nature; ChinaFil: Zhou, Zhonghe. Chinese Academy Of Sciences. Institute of Vertebrate Paleontology and Paleoanthropology; República de Chin

    Fossilized skin reveals coevolution with feathers and metabolism in feathered dinosaurs and early birds

    Get PDF
    Feathers are remarkable evolutionary innovations that are associated with complex adaptations of the skin in modern birds. Fossilised feathers in non-avian dinosaurs and basal birds provide insights into feather evolution, but how associated integumentary adaptations evolved is unclear. Here we report the discovery of fossil skin, preserved with remarkable nanoscale fidelity, in three non-avian maniraptoran dinosaurs and a basal bird from the Cretaceous Jehol biota (China). The skin comprises patches of desquamating epidermal corneocytes that preserve a cytoskeletal array of helically coiled α-keratin tonofibrils. This structure confirms that basal birds and non-avian dinosaurs shed small epidermal flakes as in modern mammals and birds, but structural differences imply that these Cretaceous taxa had lower body heat production than modern birds. Feathered epidermis acquired many, but not all, anatomically modern attributes close to the base of the Maniraptora by the Middle Jurassic

    Directional mechanical stability of Bacteriophage φ29 motor’s 3WJ-pRNA: Extraordinary robustness along portal axis

    Get PDF
    The molecular motor exploited by bacteriophage φ29 to pack DNA into its capsid is regarded as one of the most powerful mechanical devices present in viral, bacterial, and eukaryotic systems alike. Acting as a linker element, a prohead RNA (pRNA) effectively joins the connector and ATPase (adenosine triphosphatase) components of the φ29 motor. During DNA packing, this pRNA needs to withstand enormous strain along the capsid’s portal axis—how this remarkable stability is achieved remains to be elucidated. We investigate the mechanical properties of the φ29 motor’s three-way junction (3WJ)–pRNA using a combined steered molecular dynamics and atomic force spectroscopy approach. The 3WJ exhibits strong resistance to stretching along its coaxial helices, demonstrating its super structural robustness. This resistance disappears, however, when external forces are applied to the transverse directions. From a molecular standpoint, we demonstrate that this direction-dependent stability can be attributed to two Mg clamps that cooperate and generate mechanical resistance in the pRNA’s coaxial direction. Our results suggest that the asymmetric nature of the 3WJ’s mechanical stability is entwined with its biological function: Enhanced rigidity along the portal axis is likely essential to withstand the strain caused by DNA condensation, and flexibility in other directions should aid in the assembly of the pRNA and its association with other motor components

    Was Dinosaurian Physiology Inherited by Birds? Reconciling Slow Growth in Archaeopteryx

    Get PDF
    Archaeopteryx is the oldest and most primitive known bird (Avialae). It is believed that the growth and energetic physiology of basalmost birds such as Archaeopteryx were inherited in their entirety from non-avialan dinosaurs. This hypothesis predicts that the long bones in these birds formed using rapidly growing, well-vascularized woven tissue typical of non-avialan dinosaurs. We report that Archaeopteryx long bones are composed of nearly avascular parallel-fibered bone. This is among the slowest growing osseous tissues and is common in ectothermic reptiles. These findings dispute the hypothesis that non-avialan dinosaur growth and physiology were inherited in totality by the first birds. Examining these findings in a phylogenetic context required intensive sampling of outgroup dinosaurs and basalmost birds. Our results demonstrate the presence of a scale-dependent maniraptoran histological continuum that Archaeopteryx and other basalmost birds follow. Growth analysis for Archaeopteryx suggests that these animals showed exponential growth rates like non-avialan dinosaurs, three times slower than living precocial birds, but still within the lowermost range for all endothermic vertebrates. The unexpected histology of Archaeopteryx and other basalmost birds is actually consistent with retention of the phylogenetically earlier paravian dinosaur condition when size is considered. The first birds were simply feathered dinosaurs with respect to growth and energetic physiology. The evolution of the novel pattern in modern forms occurred later in the group's history

    The Rising of Paleontology in China: A Century-Long Road

    No full text
    In this paper, the history of paleontology in China from 1920 to 2020 is divided into three major stages, i.e., 1920–1949, 1949–1978, and 1979–2020. As one of the first scientific disciplines to have earned international fame in China, the development of Chinese paleontology benefitted from international collaborations and China’s rich resources. Since 1978, China’s socio-economic development and its open-door policy to the outside world have also played a key role in the growth of Chinese paleontology. In the 21st century, thanks to constant funding from the government and the rise of the younger generation of paleontologists, Chinese paleontology is expected to make even more contributions to the integration of paleontology with both biological and geological research projects by taking advantage of new technologies and China’s rich paleontological resources

    Zhonghe Zhou

    No full text
    • …
    corecore