452 research outputs found

    Molecular characters and recombinant expression of the carboxylesterase gene of the meadow moth Loxostege sticticalis L. (Lepidoptera: Pyralidae)

    Get PDF
    Insect carboxylesterases are enzymes that catalyze the hydrolysis of ester and amide moieties, which play important roles in insecticide resistance, specifically allelochemical tolerance and developmental regulation. We obtained the cDNA encoding carboxylesterase gene of Loxostege sticticalis (LstiCarE) by a cDNA library screen. The full cDNA of LstiCarE is 1,980 bp in length, containing an open reading frame (ORF) of 1,875 bp, which encodes a preprotein of 625 amino acid residues. The LstiCarE contains the catalytic triad (Ser-His-Glu), the pentapeptide GxSxG motif and GxxHxxD/E motif, which are typical characteristic of esterases. The GxSxG and GxxHxxD/E motifs of LstiCarE are modified as GCSAG and GxxHxxQ, respectively. The 3-D model structure of LstiCarE showed that Ser197, His440 and Glu321 are aggregated together, which form the catalytic triad. The recombinant LstiCarE were successfully expressed in BL21 cells using recombinant plasmid DNA, and showed high carboxylesterase activity. However, the biochemical and physiological functions of carboxylesterase gene in L. sticticalis requires further investigation.Key words: Carboxylesterase gene, Loxostege sticticalis, recombinant expression

    Oxide Heterostructures from a Realistic Many-Body Perspective

    Full text link
    Oxide heterostructures are a new class of materials by design, that open the possibility for engineering challenging electronic properties, in particular correlation effects beyond an effective single-particle description. This short review tries to highlight some of the demanding aspects and questions, motivated by the goal to describe the encountered physics from first principles. The state-of-the-art methodology to approach realistic many-body effects in strongly correlated oxides, the combination of density functional theory with dynamical mean-field theory, will be briefly introduced. Discussed examples deal with prominent Mott-band- and band-band-insulating type of oxide heterostructures, where different electronic characteristics may be stabilized within a single architectured oxide material.Comment: 19 pages, 9 figure

    The influence of PC6 on cardiovascular disorders: a review of central neural mechanisms

    Get PDF
    PC6 is a classic acupuncture point in traditional Chinese medicine. It is considered to be effective when treating cardiovascular disorders. In the present review the authors have focused on the neurophysiological bases of the effects of PC6 stimulation on cardiovascular mechanisms. Experimental studies have shown that the hypothalamic rostral ventrolateral medulla, arcuate nucleus and ventrolateral periaqueductal gray are involved in acupuncture attenuation of sympathoexcitatory cardiovascular reflex responses. This long-loop pathway also appears to contribute to the long-lasting, acupuncture-mediated attenuation of sympathetic premotor outflow and excitatory cardiovascular reflex responses. Acupuncture of PC6 modulates the activity in the cardiovascular system, an effect that may be attributed to attenuation of sympathoexcitatory cardiovascular reflex responses

    Controllable Synthesis of Single-Crystalline CdO and Cd(OH)2Nanowires by a Simple Hydrothermal Approach

    Get PDF
    Single-crystalline Cd(OH)2 or CdO nanowires can be selectively synthesized at 150 °C by a simple hydrothermal method using aqueous Cd(NO3)2 as precursor. The method is biosafe, and compared to the conventional oil-water surfactant approach, more environmental-benign. As revealed by the XRD results, CdO or Cd(OH)2 nanowires can be generated in high purity by varying the time of synthesis. The results of FESEM and HRTEM analysis show that the CdO nanowires are formed in bundles. Over the CdO-nanowire bundles, photoluminescence at ~517 nm attributable to near band-edge emission of CdO was recorded. Based on the experimental results, a possible growth mechanism of the products is proposed

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    ADAM15 mediates upregulation of Claudin-1 expression in breast cancer cells

    Get PDF
    A Disintegrin and Metalloproteinase-15 (ADAM15) is a transmembrane protein involved in protein ectodomain shedding, cell adhesion and signalling. We previously cloned and characterised alternatively spliced variants of ADAM15 that differ in their intracellular domains and demonstrated correlation of the expression of specific variants with breast cancer prognosis. In this study we have created isogenic cell panels (MDA-MB-231 and MCF-7) expressing five ADAM15 variants including wildtype and catalytically inactive forms. The expression of ADAM15 isoforms in MDA-MB-231 cells led to cell clustering to varying degree, without changes in EMT markers vimentin, slug and E-cadherin. Analysis of tight junction molecules revealed ADAM15 isoform specific, catalytic function dependent upregulation of Claudin-1. The expression of ADAM15A, and to a lesser degree of C and E isoforms led to an increase in Claudin-1 expression in MDA-MB-231 cells, while ADAM15B had no effect. In MCF-7 cells, ADAM15E was the principal variant inducing Claudin-1 expression. Sh-RNA mediated down-regulation of ADAM15 in ADAM15 over-expressing cells reduced Claudin-1 levels. Additionally, downregulation of endogenous ADAM15 expression in T47D cells by shRNA reduced endogenous Claudin-1 expression confirming a role for ADAM15 in regulating Claudin-1 expression. The PI3K/Akt/mTOR pathway was involved in regulating Claudin-1 expression downstream of ADAM15. Immunofluorescence analysis of MDA-MB-231 ADAM15A expressing cells showed Claudin-1 at cell-cell junctions, in the cytoplasm and nuclei. ADAM15 co-localised with Claudin-1 and ZO1 at cell-cell junctions. Immunoprecipitation analysis demonstrated complex formation between ADAM15 and ZO1/ZO2. These findings highlight the importance of ADAM15 Intra Cellular Domain-mediated interactions in regulating substrate selection and breast cancer cell phenotype

    Expression and prognostic significance of THBS1, Cyr61 and CTGF in esophageal squamous cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thrombospondin1 (THBS1), cystene-rich protein 61 (Cyr61) and connective tissue growth factor (CTGF) are all involved in the transforming growth factor-beta (TGF-β) signal pathway, which plays an important role in the tumorigenesis. The purpose of this study is to explore the expression and prognostic significance of these proteins in esophageal squamous cell carcinoma (ESCC).</p> <p>Methods</p> <p>We used immunohistochemistry and western blotting to examine the expression status of THBS1, Cyr61 and CTGF in ESCC. Correlations of THBS1, Cyr61 and CTGF over-expressions with various clinicopathologic factors were also determined by using the Chi-square test or Fisher's exact probability test. Survival analysis was assessed by the Kaplan-Meier analysis and the log-rank test. Relative risk was evaluated by the multivariate Cox proportional hazards model.</p> <p>Results</p> <p>THBS1, Cyr61 and CTGF were all over-expressed in ESCC. THBS1 over-expression was significantly associated with TNM stage (<it>P </it>= 0.029) and regional lymph node involvement (<it>P </it>= 0.026). Kaplan-Meier survival analysis showed that over-expression of THBS1, Cyr61 or CTGF was related to poor survival of ESCC patients (<it>P </it>= 0.042, <it>P </it>= 0.020, <it>P </it>= 0.018, respectively). Multivariate Cox analysis demonstrated that Cyr61 and CTGF were independent factors in prognosis of ESCC.</p> <p>Conclusion</p> <p>Cyr61, CTGF and THBS1 were all over-expressed in ESCC and might be new molecular markers to predict the prognosis of ESCC patients.</p

    Angiogenic factors: role in esophageal cancer, a brief review

    Get PDF
    Esophageal cancer has an aggressive behavior with rapid tumor mass growth and frequently poor prognosis; it is known as one of the most fatal types of cancer worldwide. The identification of potential molecular markers that can predict the response to treatment and the prognosis of this cancer has been subject of a vast investigation in the recent years. Among several molecules, various angiogenic factors that are linked to the tumor development, growth, and invasion, such as VEGF, HGF, angiopoietin-2, IL-6, and TGF-B1, were investigated. In this paper, the authors sought to review the role of these angiogenic factors in prognosis and hypothesize how they can be used as a treatment target.info:eu-repo/semantics/publishedVersio
    corecore