268 research outputs found

    PEMBELAJARAN LUKIS TOTEBAG PADA MATA PELAJARAN SENI BUDAYA DI KELAS X MIA 3 SMA NEGERI 3 BOYOLALI TAHUN AJARAN 2017/2018

    Get PDF
    ABSTRAK Muhammad Fahmi Al Amiq. PEMBELAJARAN LUKIS PADA TOTEBAG DALAM MATA PELAJARAN SENI BUDAYA DI KELAS X MIA 3 SMA NEGERI 3 BOYOLALI TAHUN AJARAN 2017/2018. Skripsi, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Sebelas Maret Surakarta, Januari 2018. Tujuan penelitian ini adalah untuk mengetahui: (1) Proses pelaksanaan pembelajaran Lukis Totebag di kelas X MIA 3 SMA Negeri 3 Boyolali tahun ajaran 2017/2018. Dan (2) Bagaimana bentuk hasil karya Lukis Totebag yang dihasilkan siswa di kelas X MIA 3 SMA Negeri 3 Boyolali tahun ajaran 2017/2018. Penelitian ini menggunakan pendekatan kualitatif. Sumber data yang digunakan adalah informan yang dipilih yaitu Bapak Subandiyo S.Pd selaku guru mata pelajaran seni budaya di kelas X MIA 3 SMA Negeri 3 Boyolali, serta foto proses pembelajaran, hasil karya siswa dan dokumen arsip. Teknik yang digunakan dalam pengumpulan data adalah observasi langsung, wawancara terstruktur dan mendalam, serta dokumentasi. Uji validitas data dilakukan dengan membandingkan sumber data yang di peroleh berupa daftar hasil wawancara dengan Bapak Subandiyo S.Pd selaku guru mata pelajaran Seni Budaya dengan siswa di kelas X MIA 3 SMA Negeri 3 Boyolali, serta review informant. Analisis data yang digunakan adalah model analisis mengalir, yaitu: reduksi data, sajian data, dan penarikan kesimpulan. Hasil penelitian ini menunjukkan bahwa: (1) Pembelajaran Lukis Totebag diawali dengan pembuatan RPP, selanjutnya pembelajaran dilaksanakan selama tiga kali pertemuan. Strategi yang digunakan guru dalam pembelajaran ini adalah pendekatan scientific. Metode pembelajaran yang digunakan meliputi metode ceramah, tanya jawab, diskusi, dan pemberian tugas. Media pembelajaran yang digunakan berupa slide power point dan media visual berupa sampel karya dari guru. Evaluasi pembelajaran dilakukan dengan menilai aspek kognitif, afektif, dan psikomotorik. Proses pembuatan karya dilakukan dengan beberapa langkah, yaitu membuat sketsa, proses pewarnaan, dan finishing. (2) Secara umum pembuatan karya lukis totebag siswa sudah baik, teknik lukis pada pewarnaan dan finishing dalam membuat karya lukis totebag sudah baik. Karya lukis totebag yang dihasilkan oleh siswa sudah mengandung unsur-unsur seni rupa, yaitu: garis, bentuk, bidang, gelap terang, dan warna. Selain itu, karya lukis totebag yang dihasilkan oleh siswa juga sudah mengandung prinsip-prinsip seni rupa, yaitu: irama (rhytm), dominasi (dominance), keseimbangan (balance), kesatuan (unity), keserasian (harmony), dan kesebandingan (proportion). Kata Kunci: Seni Budaya, Pembelajaran Seni Rupa, Lukis Toteba

    Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics

    No full text
    Harvesting energy from our living environment is an effective approach for sustainable, maintenance-free, and green power source for wireless, portable, or implanted electronics. Mechanical energy scavenging based on triboelectric effect has been proven to be simple, cost-effective, and robust. However, its output is still insufficient for sustainably driving electronic devices/systems. Here, we demonstrated a rationally designed arch-shaped triboelectric nanogenerator (TENG) by utilizing the contact electrification between a polymer thin film and a metal thin foil. The working mechanism of the TENG was studied by finite element simulation. The output voltage, current density, and energy volume density reached 230 V, 15.5 μA/cm<sup>2</sup>, and 128 mW/cm<sup>3</sup>, respectively, and an energy conversion efficiency as high as 10–39% has been demonstrated. The TENG was systematically studied and demonstrated as a sustainable power source that can not only drive instantaneous operation of light-emitting diodes (LEDs) but also charge a lithium ion battery as a regulated power module for powering a wireless sensor system and a commercial cell phone, which is the first demonstration of the nanogenerator for driving personal mobile electronics, opening the chapter of impacting general people’s life by nanogenerators

    Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics

    No full text
    Harvesting energy from our living environment is an effective approach for sustainable, maintenance-free, and green power source for wireless, portable, or implanted electronics. Mechanical energy scavenging based on triboelectric effect has been proven to be simple, cost-effective, and robust. However, its output is still insufficient for sustainably driving electronic devices/systems. Here, we demonstrated a rationally designed arch-shaped triboelectric nanogenerator (TENG) by utilizing the contact electrification between a polymer thin film and a metal thin foil. The working mechanism of the TENG was studied by finite element simulation. The output voltage, current density, and energy volume density reached 230 V, 15.5 μA/cm<sup>2</sup>, and 128 mW/cm<sup>3</sup>, respectively, and an energy conversion efficiency as high as 10–39% has been demonstrated. The TENG was systematically studied and demonstrated as a sustainable power source that can not only drive instantaneous operation of light-emitting diodes (LEDs) but also charge a lithium ion battery as a regulated power module for powering a wireless sensor system and a commercial cell phone, which is the first demonstration of the nanogenerator for driving personal mobile electronics, opening the chapter of impacting general people’s life by nanogenerators

    Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics

    No full text
    Harvesting energy from our living environment is an effective approach for sustainable, maintenance-free, and green power source for wireless, portable, or implanted electronics. Mechanical energy scavenging based on triboelectric effect has been proven to be simple, cost-effective, and robust. However, its output is still insufficient for sustainably driving electronic devices/systems. Here, we demonstrated a rationally designed arch-shaped triboelectric nanogenerator (TENG) by utilizing the contact electrification between a polymer thin film and a metal thin foil. The working mechanism of the TENG was studied by finite element simulation. The output voltage, current density, and energy volume density reached 230 V, 15.5 μA/cm<sup>2</sup>, and 128 mW/cm<sup>3</sup>, respectively, and an energy conversion efficiency as high as 10–39% has been demonstrated. The TENG was systematically studied and demonstrated as a sustainable power source that can not only drive instantaneous operation of light-emitting diodes (LEDs) but also charge a lithium ion battery as a regulated power module for powering a wireless sensor system and a commercial cell phone, which is the first demonstration of the nanogenerator for driving personal mobile electronics, opening the chapter of impacting general people’s life by nanogenerators

    Phase Separation Prior to Alloying Observed in Vacuum Heating of Hybrid Au/Cu<sub>2</sub>O Core–Shell Nanoparticles

    No full text
    The coexistence of decomposition, phase segregation, and alloying behaviors of Au@Cu<sub>2</sub>O core–shell nanoparticles were found through in situ heating transmission electron microscopy imaging and spectral-analysis techniques. Thermally induced compositional variations (from Cu<sub>2</sub>O to Cu) were observed to be present in the nanoparticle shells, which was followed by a spontaneous occurrence of Au–Cu alloying. The higher-Cu loading (1:10 Au/Cu) sample displays a clear Cu/Cu<sub>2</sub>O phase segregation driven by the internal stresses resulting from lattice mismatch. Cu extrusions also occur in this sample after storage in ethanol for 10 days. These in situ observations/findings may help enhance a fundamental understanding of remarkable experimental aspects arising in catalytic processes and other applications as well as provide a valuable reference for testing/refining potential models of hybrid nanoparticles in theoretical calculations

    Anomalous Growth and Coalescence Dynamics of Hybrid Perovskite Nanoparticles Observed by Liquid-Cell Transmission Electron Microscopy

    No full text
    We report on <i>in situ</i> observations of nucleation, growth, and aggregation of hybrid organic–inorganic perovskites by liquid-cell transmission electron microscopy. Direct crystallization of hybrid CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> nanoparticles is achieved through an electron beam-assisted solvent evaporation approach. Time-lapse liquid-cell TEM imaging of the nanoparticles reveals a growth trend which is not entirely consistent with the classical Lifshitz–Slyozov–Wagner growth model. Significantly complex dynamical behaviors are observed during the coalescence process of CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> nanoparticles. We propose that the chemical instability inherent in the hybrid perovskite iodides should be considered to understand this phenomenon in addition to the oriented attachment mechanism. This study provides a useful reference for understanding the intriguing chemical and physical properties of hybrid organic–inorganic perovskites

    Multishelled Si@Cu Microparticles Supported on 3D Cu Current Collectors for Stable and Binder-free Anodes of Lithium-Ion Batteries

    No full text
    Silicon has proved to be a promising anode material of high-specific capacity for the next-generation lithium ion batteries (LIBs). However, during repeated discharge/charge cycles, Si-based electrodes, especially those in microscale size, pulverize and lose electrical contact with the current collectors due to large volume expansion. Here, we introduce a general method to synthesize Cu@M (M = Si, Al, C, SiO<sub>2</sub>, Si<sub>3</sub>N<sub>4</sub>, Ag, Ti, Ta, SnIn<sub>2</sub>O<sub>5</sub>, Au, V, Nb, W, Mg, Fe, Ni, Sn, ZnO, TiN, Al<sub>2</sub>O<sub>3</sub>, HfO<sub>2</sub>, and TiO<sub>2</sub>) core–shell nanowire arrays on Cu substrates. The resulting Cu@Si nanowire arrays were employed as LIB anodes that can be reused via HCl etching and H<sub>2</sub>-reduction. Multishelled Cu@Si@Cu microparticles supported on 3D Cu current collectors were further prepared as stable and binder-free LIB anodes. This 3D Cu@Si@Cu structure allows the interior conductive Cu network to effectively accommodate the volume expansion of the electrode and facilitates the contact between the Cu@Si@Cu particles and the current collectors during the repeated insertion/extraction of lithium ions. As a result, the 3D Cu@Si@Cu microparticles at a high Si-loading of 1.08 mg/cm<sup>2</sup> showed a capacity retention of 81% after 200 cycles. In addition, charging tests of 3D Cu@Si@Cu-LiFePO<sub>4</sub> full cells by a triboelectric nanogenerator with a pulsed current demonstrated that LIBs with silicon anodes can effectively store energy delivered by mechanical energy harvesters

    Hybridized Electromagnetic–Triboelectric Nanogenerator for a Self-Powered Electronic Watch

    No full text
    We report a hybridized nanogenerator including a triboelectric nanogenerator (TENG) and six electromagnetic generators (EMGs) that can effectively scavenge biomechanical energy for sustainably powering an electronic watch. Triggered by the natural motions of the wearer’s wrist, a magnetic ball at the center in an acrylic box with coils on each side will collide with the walls, resulting in outputs from both the EMGs and the TENG. By using the hybridized nanogenerator to harvest the biomechanical energy, the electronic watch can be continuously powered under different motion types of the wearer’s wrist, where the best approach is to charge a 100 μF capacitor in 39 s to maintain the continuous operation of the watch for 456 s. To increase the working time of the watch further, a homemade Li-ion battery has been utilized as the energy storage unit for realizing the continuous working of the watch for about 218 min by using the hybridized nanogenerator to charge the battery within 32 min. This work will provide the opportunities for developing a nanogenerator-based built-in power source for self-powered wearable electronics such as an electronic watch

    Enhanced P3HT/ZnO Nanowire Array Solar Cells by Pyro-phototronic Effect

    No full text
    The pyro-phototronic effect is based on the coupling among photoexcitation, pyroelectricity, and semiconductor charge transport in pyroelectric materials, which can be utilized to modulate photoexcited carriers to enhance the output performance of solar cells. Herein, we have demonstrated the largely enhanced output performance of a P3HT/ZnO nanowire array photovoltaic cell (PVC) by using the pyro-phototronic effect under weak light illuminations. By applying an external cooling temperature variation, the output current and voltage of the PVC can be dramatically enhanced by 18% and 152% under indoor light illumination, respectively. This study realizes the performance enhancement of pyroelectric semiconductor materials-based solar cells <i>via</i> a temperature-variation-induced pyro-phototronic effect, which may have potential applications in solar energy scavenging and self-powered sensor systems

    Conductive Fabric-Based Stretchable Hybridized Nanogenerator for Scavenging Biomechanical Energy

    No full text
    We demonstrate a stretchable hybridized nanogenerator based on a highly conductive fabric of glass fibers/silver nanowires/polydimethylsiloxane. Including a triboelectric nanogenerator and an electromagnetic generator, the hybridized nanogenerator can deliver output voltage/current signals from stretchable movements by both triboelectrification and electromagnetic induction, maximizing the efficiency of energy scavenging from one motion. Compared to the individual energy-harvesting units, the hybridized nanogenerator has a better charging performance, where a 47 ÎĽF capacitor can be charged to 2.8 V in only 16 s. The hybridized nanogenerator can be integrated with a bus grip for scavenging wasted biomechanical energy from human body movements to solve the power source issue of some electric devices in the pure electric bus
    • …
    corecore