17 research outputs found

    Heat-stable enterotoxins of enterotoxigenic Escherichia coli and their impact on host immunity

    Get PDF
    Enterotoxigenic Escherichia coli (ETEC) are an important diarrhea-causing pathogen and are regarded as a global threat for humans and farm animals. ETEC possess several virulence factors to infect its host, including colonization factors and enterotoxins. Production of heat-stable enterotoxins (STs) by most ETEC plays an essential role in triggering diarrhea and ETEC pathogenesis. In this review, we summarize the heat-stable enterotoxins of ETEC strains from different species as well as the molecular mechanisms used by these heat-stable enterotoxins to trigger diarrhea. As recently described, intestinal epithelial cells are important modulators of the intestinal immune system. Thus, we also discuss the impact of the heat-stable enterotoxins on this role of the intestinal epithelium and how these enterotoxins might affect intestinal immune cells. Finally, the latest developments in vaccination strategies to protect against infections with ST secreting ETEC strains are discussed. This review might inform and guide future research on heat-stable enterotoxins to further unravel their molecular pathogenesis, as well as to accelerate vaccine design

    Changes in Soil Bacterial Community and Function in Winter Following Long-Term Nitrogen (N) Deposition in Wetland Soil in Sanjiang Plain, China

    No full text
    N deposition is a key factor affecting the composition and function of soil microbial communities in wetland ecosystems. Previous studies mainly focused on the effects of N deposition in the soil during the growing season (summer and autumn). Here, we focused on the response of the soil microbial community structure and function in winter. Soil from the Sanjiang Plain wetland, China, that had been treated for the past 11 years by using artificial N deposition at three levels (no intervention in N0, N deposition with 4 g N m−2 yr−1 in N1, and with 8 g N m−2 yr−1 in N2). Soil characteristics were determined and the bacterial composition and function was characterized using high-throughput sequence technology. The N deposition significantly reduced the soil bacterial diversity detected in winter compared with the control N0, and it significantly changed the composition of the bacterial community. At the phylum level, the high N deposition (N2) increased the relative abundance of Acidobacteria and decreased that of Myxococcota and Gemmatimonadota compared with N0. In soil from N2, the relative abundance of the general Candidatus_Solibacter and Bryobacter was significantly increased compared with N0. Soil pH, soil organic carbon (SOC), and total nitrogen (TN) were the key factors affecting the soil bacterial diversity and composition in winter. Soil pH was correlated with soil carbon cycling, probably due to its significant correlation with aerobic_chemoheterotrophy. The results show that a long-term N deposition reduces soil nutrients in winter wetlands and decreases soil bacterial diversity, resulting in a negative impact on the Sanjiang plain wetland. This study contributes to a better understanding of the winter responses of soil microbial community composition and function to the N deposition in temperate wetland ecosystems

    Effects of elevated CO2 and nitrogen deposition on ecosystem carbon fluxes on the Sanjiang plain wetland in Northeast China.

    Get PDF
    BACKGROUND: Increasing atmospheric CO2 and nitrogen (N) deposition across the globe may affect ecosystem CO2 exchanges and ecosystem carbon cycles. Additionally, it remains unknown how increased N deposition and N addition will alter the effects of elevated CO2 on wetland ecosystem carbon fluxes. METHODOLOGY/PRINCIPAL FINDINGS: Beginning in 2010, a paired, nested manipulative experimental design was used in a temperate wetland of northeastern China. The primary factor was elevated CO2, accomplished using Open Top Chambers, and N supplied as NH4NO3 was the secondary factor. Gross primary productivity (GPP) was higher than ecosystem respiration (ER), leading to net carbon uptake (measured by net ecosystem CO2 exchange, or NEE) in all four treatments over the growing season. However, their magnitude had interannual variations, which coincided with air temperature in the early growing season, with the soil temperature and with the vegetation cover. Elevated CO2 significantly enhanced GPP and ER but overall reduced NEE because the stimulation caused by the elevated CO2 had a greater impact on ER than on GPP. The addition of N stimulated ecosystem C fluxes in both years and ameliorated the negative impact of elevated CO2 on NEE. CONCLUSION/SIGNIFICANCE: In this ecosystem, future elevated CO2 may favor carbon sequestration when coupled with increasing nitrogen deposition

    Adaptive changes in chlorophyll content and photosynthetic features to low light in Physocarpus amurensis Maxim and Physocarpus opulifolius “Diabolo”

    No full text
    The present study aims to investigate the differences in leaf pigment content and the photosynthetic characteristics under natural and low light intensities between the Chinese native Physocarpus amurensis Maxim and the imported Physocarpus opulifolius “Diabolo” from North America. We aim to discuss the responses and the adaptive mechanism of these two cultivars of Physocarpus to a low light environment. The results show that the specific leaf area (SLA) and the chlorophyll content were significantly increased in the leaves of both Physocarpus cultivars in response to a low light intensity, and the SLA and chlorophyll content were higher in the leaves of low light-treated P. opulifolius “Diabolo” compared with the leaves of low light-treated P. amurensis Maxim. Moreover, the content of anthocyanin was markedly reduced in the leaves of P. opulifolius “Diabolo” under low light intensity, which allowed for a greater capacity of photon capture under the low light condition. Under natural light, the photosynthetic carbon assimilation capacity was greater in the leaves of P. amurensis Maxim compared with the leaves of P. opulifolius “Diabolo” that were rich with anthocyanin. However, in response to low light, AQY, Pmax, LCP and LSP decreased to a lesser extent in the leaves of P. opulifolius “Diabolo” compared with the leaves of P. amurensis Maxim. These results suggest that P. opulifolius “Diabolo” exhibits a greater ability in adaption to low light, and it is probably related to the relatively higher chlorophyll content and the smaller SLA in the leaves of P. opulifolius “Diabolo.” In addition, the low light intensity resulted in a reduced photochemical activity of photosystem (PS) II in the leaves of both Physocarpus, as evidenced by increased values of the relative variable fluorescence at point J and point I on the OJIP curve. This result suggests that the electron acceptor in PS II was the major responsive site to the low light stress in the leaves of both Physocarpus cultivars, and that the low light intensity significantly inhibited electron transfer on the acceptor side of PS II and reduced the activity of the oxygen-evolving complex (OEC) in the leaves of both Physocarpus cultivars. The PS II function in P. opulifolius “Diabolo” was higher than that in P. amurensis Maxim in response to low light. Under low light, the composition of photosynthetic pigments was altered in the leaves of P. opulifolius “Diabolo” in order to maintain a relatively high activity of primary photochemical reactions, and this is the basis of the greater photosynthetic carbon assimilation capacity and one of the main reasons for the better shade-tolerance in P. opulifolius “Diabolo.

    Temporal dependence of net ecosystem CO<sub>2</sub> exchange (NEE), ecosystem respiration (ER) and gross primary productivity (GPP) to soil temperature (T<sub>soil</sub>, °C) across different plots in 2010 and 2011.

    No full text
    <p>Temporal dependence of net ecosystem CO<sub>2</sub> exchange (NEE), ecosystem respiration (ER) and gross primary productivity (GPP) to soil temperature (T<sub>soil</sub>, °C) across different plots in 2010 and 2011.</p

    Correlations of net ecosystem CO<sub>2</sub> exchange (NEE), ecosystem respiration (ER) and gross primary productivity (GPP) with vegetation cover across different plots in July of 2010 and 2011.

    No full text
    <p>Correlations of net ecosystem CO<sub>2</sub> exchange (NEE), ecosystem respiration (ER) and gross primary productivity (GPP) with vegetation cover across different plots in July of 2010 and 2011.</p
    corecore