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Abstract: Enterotoxigenic Escherichia coli (ETEC) are an important diarrhea-causing pathogen and are
regarded as a global threat for humans and farm animals. ETEC possess several virulence factors to
infect its host, including colonization factors and enterotoxins. Production of heat-stable enterotoxins
(STs) by most ETEC plays an essential role in triggering diarrhea and ETEC pathogenesis. In this
review, we summarize the heat-stable enterotoxins of ETEC strains from different species as well as
the molecular mechanisms used by these heat-stable enterotoxins to trigger diarrhea. As recently
described, intestinal epithelial cells are important modulators of the intestinal immune system. Thus,
we also discuss the impact of the heat-stable enterotoxins on this role of the intestinal epithelium
and how these enterotoxins might affect intestinal immune cells. Finally, the latest developments in
vaccination strategies to protect against infections with ST secreting ETEC strains are discussed. This
review might inform and guide future research on heat-stable enterotoxins to further unravel their
molecular pathogenesis, as well as to accelerate vaccine design.

Keywords: ETEC; heat-stable enterotoxins; vaccination strategies

Key Contribution: We summarize existing knowledge of heat-stable enterotoxins of ETEC strains
and the development of related vaccination strategies.

1. Introduction

Enterotoxigenic Escherichia coli (ETEC) are a common cause of acute diarrheal disease in both
humans and farm animals [1–3]. Children and travelers within ETEC endemic regions are the main
populations that suffer from acute diarrheal illnesses [4,5]. Indeed, heat-stable enterotoxins (STs)
producing ETEC strains are ranked eighth among enteropathogens leading to diarrhea with mortality
in 2016, accounting for 3.2% total diarrhea with mortality among all age groups, and 4.2% in children
under five years old [6–8]. On top of that, repeated moderate-to-severe ETEC infections in children can
cause long term consequences, such as malnutrition, stunted growth, chronic inflammation of the gut
and impaired cognate development [9–12]. Moreover, ETEC account for up to 70% of cases of traveler’s
diarrhea, although improved hygiene has reduced the risk to 8% to 20% in some countries [2,5]. Among
farm animals, ETEC infections are mainly reported in neonatal cattle and piglets. In the latter, ETEC
infections during the post-weaning period increase the mortality rate and hamper growth, leading to
severe economic losses for farming industries worldwide [13,14].
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Enterotoxigenic Escherichia coli are spread via fecal–oral transmission among hosts and several
virulence factors, such as adhesins and enterotoxins, play an important role in its pathogenesis. Upon
ingestion and after reaching the gastrointestinal tract, ETEC colonize the small intestine through
an interaction of fimbrial and non-fimbrial adhesins with specific receptors present in the apical
membrane of the small intestinal epithelium [15]. To date, at least 25 distinct colonization factors
have been identified in human ETEC strains, while in swine-specific ETEC strains only five different
fimbrial adhesins have been identified [16,17]. For most of the fimbriae of the pig-specific ETEC strains
the receptor has been identified [18]. However, for human ETEC strains, the epithelial interaction
partners for their adhesins are only recently being unraveled [19]. Upon attachment to the epithelium,
ETEC release heat-labile (LT) and/or heat-stable enterotoxins, that act upon intestinal enterocytes by
disrupting the electrolyte homeostasis, resulting in fluid loss and eventually secretory diarrhea [15].
Studies in cell lines as well as animal models including humans revealed that both LT and ST contribute
to ETEC infection [20,21]. Enterotoxin LT can be divided into LT-I and LT-II serogroups. Enterotoxin LTI
has two variants isolated from human (LT-Ih) and porcine (LT-Ip) strains, which not only elicit diarrhea,
but also improve the adherence of ETEC strains and other pathogens to the intestinal epithelium [22–25].
In contrast to the plasmid-encoded LT-I, the LT-II variants are encoded by chromosome and prophages
and consist of three variants LT-IIa, LT-IIb, and LT-IIc enterotoxins, but seem to be only associated with
diarrhea in calves (Table 1) [26,27]. Similar to LT, the ST enterotoxins display a certain heterogeneity
and their functions stretch beyond their role in diarrhea induction. In the following sections we will
focus on the current knowledge on the role of the heat-stable enterotoxins in ETEC pathogenesis, their
impact on host immunity, and the development of vaccines targeting ST-induced diarrhea.

2. Heat-Stable Enterotoxins of ETEC from Human and Animal Origin

2.1. Genetics, Structure, and Secretion of Heat-Stable Enterotoxins

Heat-stable enterotoxins produced by ETEC are secreted peptides that can be divided in two
types, STa and STb. While the latter is more virulent in animals and particularly in post-weaning pigs,
the STa enterotoxin is more relevant in diarrhea induction in humans, newborn piglets and calves [28].
These peptides are encoded by two genes, estA (STI) and estB (STII), which are located on plasmids,
and can be distinguished from each other by their solubility in methanol and their protease sensitivity.
Enterotoxin STa is methanol soluble and protease resistant, while STb is methanol insoluble and
protease sensitive. According to the host species, STa is further classified into two subtypes, known as
STp and STh, which were originally isolated from swine and human ETEC strains, respectively [29].
While STp is widely found in porcine, bovine, and human ETEC strains, STh is only produced by
human ETEC strains (Table 1) [30].

Table 1. Enterotoxins produced by Enterotoxigenic Escherichia coli (ETEC).

Enterotoxins Variants Encoding Gene Location of Genes Host Specificity Receptor Reference

Heat-labile
enterotoxin (LT)

LTIh eltAB plasmid humans GM1a [25,31,32]
LTIp eltAB plasmid piglets GM1a [31,33]

LTIIa eltAB chromosome,
prophages

water-buffalo,
humans GD1b [27,30,31]

LTIIb eltAB chromosome,
prophages unknown GD1a [27,30,31]

LTIIc eltAB chromosome,
prophages humans, calves GM1a [26,27,31]

Heat-stable
enterotoxin (STa)

STp estA1, estA5, estA6 plasmids piglets, calves,
humans GC-C [30,34]

STh estA2, estA3/4, estA7 plasmids humans GC-C [30,34,35]

Heat-stable
enterotoxin (STb)

STb estB plasmids post-weaning pigs sulfatide [36,37]
STbH12N estBC34A plasmids post-weaning pigs sulfatide [38,39]

GM = Monosialotetrahexosylganglioside; GD = Disialoganglioside; GC-C = guanylate cyclase.
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The STa gene encodes a 72 amino acids pre-pro-peptide precursor. Recently, six allele variants
were discovered, which differ in their pro region: estA1, estA5 and estA6 from porcine origin (STp)
and estA2, estA3/4 and estA7 from human origin (STh) (Table 1) [30,40]. Although the estA1 gene
was first cloned from a bovine ETEC isolate, in STp+ strains the estA5 gene is the most common
variant in isolates inducing diarrhea in animals and adults [30]. For the STh+ strains inducing diarrhea
in children, the estA3/4 gene is the most common variant [30]. Despite these variations within the
pro region, each STa allele variant is translated into a propeptide, composed of a 19 amino acids (aa)
signal peptide, followed by a 34 aa prosequence, and the mature STa peptide. After translocation
from the inner membrane to the periplasm, the propeptide is cleaved into the mature STa peptide
(STh: 19 aa; STp: 18 aa) [28]. In the periplasm, the disulfide oxidoreductase DsbA forms three
intramolecular disulfide bonds between cysteine residues Cys5-Cys10, Cys6-Cys14, and Cys9-Cys17 in
STp or Cys6-Cys11, Cys7-Cys15, and Cys10-Cys18 in STh [41]. These intramolecular disulfide bridges
ensure correct folding of the mature STa peptide, which closely resembles that of two mammalian
peptides, guanylin and uroguanylin, and are important for its function [41]. Secretion of mature STh
and STp into the extracellular environment requires the efflux protein TolC (Figure 1) [42]. Interestingly,
these authors also showed that the propeptide (pro-STh) is secreted, reaffirming earlier reports on
propeptide secretion by human ETEC strains [43]. This propeptide may be processed into mature STa
and properly folded outside the bacteria, as the intramolecular disulfide bonds can be formed in the
extracellular environment [44].
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Figure 1. Secretion of heat-stable enterotoxins by ETEC. (a) The sequences of mature STa and
STb peptides and the dashed lines shown in the heat-stable enterotoxin (ST) peptides represent
the disulfide bonds. (b) Synthesis and secretion of STa and STb. Sec: Secretory pathway; DsbA:
Disulfide oxidoreductase.

In contrast to STa, the gene encoding the heat-stable enterotoxin STb is highly conserved in ETEC
isolates worldwide. Until now, only one STb allele variant has been reported (a His12→Asn change),
which was mainly associated with STa- and Stx2-positive ETEC strains (Table 1) [38,39]. Just like
STa, STb is synthetized as a 71 amino acids prepeptide, comprising a signal peptide and the mature
STb enterotoxin of 48 amino acids (ca. 5.2 kDa) [45]. Once released in the periplasm, this signal
peptide is cleaved to form the mature STb peptide. A correct folding of this peptide in the periplasm
is mediated by DsbA, which catalyzes the formation of two disulfide bonds at position Cys10-Cys48
and Cys21-Cys36 [45]. The secretion of STb in the extracellular space is also controlled by TolC
(Figure 1) [36,45]. Although sporadically reported in human ETEC strains, a role of the STb enterotoxin
in human diarrheal disease is still a matter of debate [46]. In contrast, STb+ ETEC strains are mainly
associated with diarrhea in animals and particularly in post-weaning piglets [20,47]. In the latter,
using the small intestinal segment perfusion (SISP) technique, STb was shown to play a dominant role
during the early secretory response as compared to the contribution of STa and LT [20]. In younger
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piglets (two weeks old), LT was reported to be a more important virulence factor as compared to
STb [20,48,49].

2.2. Molecular Mechanisms of STs Induced Diarrhea

The release of STs into the small intestine enables their binding to target receptors in the brush
border membrane of the small intestinal epithelial cells, which activates intracellular signaling cascades,
resulting in a disruption of the electrolyte homeostasis and finally leading to fluid secretion [15].
Heat-stable enterotoxin STa binds to the guanylate cyclase C receptor and activates its intracellular
catalytic domain, causing the hydrolysis of guanosine triphosphate (GTP) and accumulation of
intracellular cyclic GMP (cGMP) levels. These increased cGMP levels activate cGMP-dependent
protein kinase II (PKGII) [15,50,51]. In addition, cGMP was shown to inhibit phosphodiesterase 3
(PDE3), leading to the activation of cAMP-dependent protein kinase A (PKA) [52]. Activated PKGII
and PKA phosphorylate and open the cystic fibrosis transmembrane conductance regulator (CFTR)
Cl− channel, inducing Cl− and HCO3

− release into the intestinal lumen [50–53]. Protein kinase
A also phosphorylates the sodium/hydrogen exchanger 3 (NHE3) that inhibits Na+ reabsorption
(Figure 2) [54].
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Figure 2. Schematic mechanisms of heat-stable enterotoxins on enterocytes and the intestinal immune
system. (a): The impact of STs on apical membranes; (b): The impact of STs on transepithelial dendrites;
(c): The paracellular transport of STs. GC-C: Guanylate cyclase C; CFTR: Cystic fibrosis transmembrane
conductance regulator; NHE3: Na+/H+ exchanger; PKA: cAMP-dependent protein kinase; PKGII:
cGMP-dependent protein kinase II; PDE3: cGMP-inhibitable phosphodiesterase 3; Gαi3: pertussis
Toxin-sensitive GTP-binding regulatory protein; A2: Phospholipases A2; C: Phospholipases C; PGE2:
Prostaglandin E2; 5-HT: 5-hydroxytryptamine; CaMKII: Calmodulin-dependent protein kinase II;
MMP1: Matrix metallopeptidase 1; TJs: Tight junctions.
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Heat-stable enterotoxin STb, on the other hand, was shown to interact specifically with sulfatide
present on the surface of intestinal epithelial cells in the porcine jejunum [55,56]. This interaction
activates a pertussis toxin-sensitive GTP-binding regulatory protein (Gαi3) and subsequently causes
a calcium ion influx through a receptor-dependent ligand-gated Ca2+ channel [56]. The elevated
intracellular Ca2+ concentration in response to STb is involved in the activation of calmodulin-
dependent protein kinase II (CaMKII) through the Ca2+-calmodulin pathway and also in the protein
kinase C (PKC)-mediated activation of CFTR, resulting in fluid accumulation in the intestine [57–59].
Intriguingly, using ligated small intestinal loops, an inverse relationship between STb secretion and F4+

ETEC adhesion was reported, inciting the authors to speculate that STb-induced diarrhea is required
for ETEC transmission [60]. The increased intracellular Ca2+ concentration was also linked to the
production of the intestinal secretagogues prostaglandin E2 (PGE2) and 5-hydroxytryptamine (5-HT)
by regulating the activity of the phospholipases A2 and C (Figure 2) [61,62].

2.3. Impact on Enterocytes and the Intestinal Immune System

In addition to triggering diarrhea through the mechanisms described above, heat-stable
enterotoxins have multiple functions that stretch beyond this known role. For instance, the STb
enterotoxin is able to increase the permeability of the intestinal epithelium by modulating the tight
junctional complexes (Figure 2) [63]. Two mechanisms have been described by which STb affects tight
junctions. On the one hand, STb was shown to decrease the expression of the tight junction (TJ) proteins
zona occludens-1 (ZO-1) and occludin [64,65]. On the other hand, the elevated intracellular Ca2+ levels
in response to STb redistribute claudin-1, a transmembrane protein pivotal to maintain TJ integrity,
from the plasma membrane to the cytosol, leading to an increased paracellular permeability [64,65].

In addition, ST enterotoxins might also modulate innate immune responses. Using enterotoxin-
deficient ETEC mutants and the porcine SISP technique to elucidate changes in the transcriptional
landscape, it was shown that ETEC infection triggers a general anti-bacterial response in the
small intestinal tissues through the upregulation of Reg3α, matrix metallopeptidase 1 (MMP1) and
the chemokine IL-8 [20]. In addition, a STb-specific response was identified, comprising matrix
metallopeptidase 3 (MMP3) and immune-related genes, like IL-17A, IL-1α, and IL-1β [20]. STa on
the other hand enhanced the luminal secretion of pro-inflammatory cytokines and chemokines, like
IL-6 and IL-8, in the small intestine (Figure 2) [48]. The cellular source of these upregulated genes and
proteins remains unknown, but both intestinal epithelial cells and innate immune cells might account
for the observed changes.

In contrast to known effects of STs on intestinal epithelial cells, to the best of our knowledge
nothing is known on the impact of these enterotoxins on the function of innate (neutrophils,
macrophages) and adaptive immune cells (T and B cells) residing within the villus epithelium.
Given the long-lasting effects of ETEC-induced diarrhea on gut health, it might be worthwhile to
investigate this.

2.4. STs-Based Vaccines to Combat Human and Animal ETEC Induced Diarrhea

It is beyond doubt that vaccine design has benefited from the omics revolution and the
development of bioinformatics to analyze the resulting data sets. However, discussing these
technologies is out of the scope of the review. In our opinion, vaccine design to prevent ETEC
infection has focused on three strategies. The first strategy included ETEC colonization factors and the
enterotoxin LT. The most recent vaccine candidate based on this strategy is the Etvax vaccine, which is
now being tested in phase I/II clinical trials [66,67]. A second vaccine strategy is based on inducing ST
neutralizing antibodies [68,69]. A third strategy was recently developed and focuses on the inclusion
of conserved ETEC proteins as vaccine antigens [70].

As mentioned above, ETEC cause considerable mortality and morbidity in young children and
piglets [8,14]. In contrast to piglets, which can be protected by a live oral vaccine (Coliprotect®, Prevtec
Microbia Inc., Saint-Hyacinthe, QC, Canada), comprising a mixture of F4+ and F18+ E. coli, currently
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no vaccines are licensed to protect against human ETEC infections [71]. Currently, vaccine design to
prevent ETEC infections in humans focuses on three strategies, which aim to induce protective
antibodies against colonization factors, the heat-stable enterotoxins or more recently conserved
ETEC antigens [69,70]. Based on our understanding of the molecular pathogenesis of ETEC, initial
vaccine development focused on including colonization factors and the enterotoxin LT. However, the
development of these vaccines has been hampered due to the large heterogeneity in colonization
factors (CFs) of human ETEC strains [72]. In addition, a considerable amount of the human ETEC
strains simultaneously express more than one CF [72]. Since ETEC strains producing any of these
CFs combined with either LT and/or STa enterotoxins can cause diarrhea, an effective vaccine should
induce protective immunity against all CFs and both enterotoxins. Therefore one vaccine candidate,
currently in phase I/II clinical trials, contains four inactivated recombinant E. coli strains, which
overexpress CFA/I, CS3, CS5 and, CS6, and a recombinant cholera toxin B-subunit (CTB), in which
seven amino acids have been replaced by the corresponding amino acids of LT B-subunit (LTB)
(ETVAX®, Scandinavian Biopharma, Turku, Finland) [67]. This vaccine candidate however does not
contain a STa toxoid. This vaccine candidate however does not contain a STa toxoid. Additional vaccine
design has now shifted to other ETEC antigens and the inclusion of ST or their toxoids, especially
since ST-producing ETEC are commonly associated with severe diarrheal illness in young children in
endemic areas [5,68].

However, both STa and STb are small peptides which are poorly immunogenic and display
toxicity that hinders their inclusion as antigens in vaccines. To increase the immunogenicity of STs,
a recombinant fusion protein comprising STp, LTB and STb (STp-LTB-STb, SLS) was generated and
included in a multivalent vaccine together with F4ac and F5 antigens derived from porcine ETEC
strains [68]. Upon intramuscular injection of this vaccine to sows, their offspring was passively
protected against ETEC infection [73]. To reduce toxicity, mutations should be introduced without
affecting the presence of epitopes, necessary for neutralizing antibodies, and at the same time avoiding
cross reactivity to guanylin and uroguanylin [74]. A double mutated STh (L9S/A14T) was developed
without measurable toxicity as compared to native STh. This mutant might be a good candidate to
include in future vaccines [75]. To increase the immunogenicity of this, and other ST mutants showing
less toxicity, they could be chemically conjugated or genetically fused to carrier proteins, such as
bovine serum albumin (BSA) or LTB [76,77]. In order to broaden enterotoxin immunogenicity and
design efficient ETEC vaccines, Zhang et al. developed the concept of multi-epitope fusion antigen
(MEFA) to express fusion proteins that carry different antigenic elements of ETEC toxins [78,79].
This concept was first investigated using a fusion protein containing mutated porcine LT toxoid
(pLT192) and STa (pSTa12 or pSTa13) toxoids, which retained their immunogenicity but reduced their
toxicity [78]. Their results showed that immunizing sows triggered detectable anti-LT and anti-STp
serum antibodies and partially protected piglets through passive immunity against an STp+ ETEC
challenge infection [78]. Recently, they engineered a new MEFA construct composed of a mutated
STp toxoid, STb, Stx2e epitopes and the A1 peptide of mutated LT toxoid (LTR192G-STb-Stx2e-STaP12F,
LTR192G-STb-Stx2e-3xSTaP12F) [80]. After intraperitoneal injection of the latter fusion protein carrying
three copies of STp, it induced a significantly higher anti-STp antibody titer in mice [80]. Interestingly,
intramuscular immunization of gilts with this vaccine candidate adjuvanted with dmLT resulted in the
passive protection of piglets against STp+, STb+, and LT+ recombinant ETEC challenge infections [80].
This MEFA construct was further modified to include colonization factor antigens (CFA) from human
ETEC strains (MEFA CFA/I/II/IV-3xSTaN12S-mnLTR192G/L211A) [81]. This vaccine candidate triggered
significant anti-adhesin and anti-toxin antibody levels in mice and pigs and protected 76.5% of the
piglets against STa+ or LT+ ETEC induced diarrhea [81].

Mucosal vaccination is the most efficient way to protect against enteric infectious diseases
as it induces local immune responses at the site of infection [82]. As mentioned above, ETEC
pathogen diversity has slowed vaccine design. To overcome this diversity, recent research efforts
using comparative genomics have identified novel conserved antigens, which are recognized by the
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human immune system in controlled human infection models [70,83,84] These novel antigens should
be evaluated as potential vaccine candidates to prevent ETEC infections upon mucosal administration.
However, the development of effective oral vaccines still encounters multiple challenges, such as
antigen degradation in the gastrointestinal tract and low uptake of intact antigens by the epithelial
barrier [85]. In recent years, advances in nanotechnology allowed the design of nanoparticle-based
vaccines, which might overcome the bottleneck of low antigen delivery and serve as alternative
oral antigen delivery systems [86,87]. Antigen-loaded nanoparticles can be taken up by specialized
intestinal epithelial cells, M cells, present in the epithelium covering the Peyer’s patches, and
transcytosed through this epithelium to be phagocytosed by antigen-presenting cells (APCs) residing
within the basolateral M cell pocket [88]. Additionally, muco-inert polymers and bile-acid conjugation
might help the nanoparticles to penetrate the mucus barrier [89,90]. These features could allow
nanoparticle-based vaccines to elicit mucosal immune responses [91]. Poly (lactic-co-glycolic acid)
(PLGA) and cationized gelatin nanoparticles have been selected for encapsulation of STa in a mouse
model [92,93]. Future investigations need to validate this in large animal models, like piglets, as mice
are not a natural host for human/porcine ETEC strains. Although nanoparticle-based ETEC vaccine
candidates show many promising advantages to carry multiple ETEC derived antigens, the selection
of suitable encapsulation carriers and formulating efficient nanoparticles able to elicit strong mucosal
immune response remains a challenge in further investigations.

3. Conclusions

Enterotoxigenic Escherichia coli (ETEC) infections are an important cause of diarrhea in travelers,
children under the age of five years, neonatal farm animals and post-weaning piglets. Most ETEC strains
produce STs that are pivotal to the induction of secretory diarrhea as well as modulate the expression of
pro-inflammatory cytokines, chemokines and other immune-related genes. The mechanism of action
of these enterotoxins in diarrhea induction has been thoroughly elucidated, however, their impact
on the immune function of enterocytes and intestinal immune cells is lacking. Further research is
warranted to elucidate if, and how, heat-stable enterotoxins affect the function of these cells. This will
deepen our understanding of ETEC pathogenesis and might assist in vaccine development. Indeed,
given the mortality and long-term consequences of ST+ ETEC infections, there is an urgent need to
develop efficacious vaccines protecting against ETEC. Strategies involving mutating STs to reduce
their toxicity and genetic fusions to enhance their immunogenicity have been widely used to develop
efficient ST-based ETEC vaccines in animal models. The advances in nanotechnology might allow the
design of alternative ST-based vaccines to increase vaccine efficacy. These results encourage further
research on ST as a vaccine target. Although these vaccines are still in the pre-clinical phase, they hold
promise to potentially eliminate ETEC-induced diarrhea.
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