238 research outputs found
Potential pollen evidence for the 1933 M 7.5 Diexi earthquake and implications for post-seismic landscape recovery
The relationships between strong earthquakes, landslides, and vegetation destruction and the process of post-seismic recovery in tectonically active alpine valley areas have not been adequately documented. Here we show detailed pollen study results from a swamp located near the epicenter of the 1933 M 7.5 Diexi earthquake in eastern Qinghai-Tibetan Plateau (QTP) to reveal the impact of earthquake on vegetation, and the post-seismic recovery process. Based on(210)Pb-Cs-137 age model, the seismic event layer is well constrained. The earthquake event corresponds stratigraphically to a zone with the lowest pollen concentrations, the lowest pollen diversity, and a high frequency of non-arboreal pollen. Elaeagnaceae scrubs rapidly developed in post-seismic landscape recovery processes, which is important for reducing soil erosion and landslide activities. Natural ecological recovery is slow due to increasing human activities and historical climatic fluctuations
Long-term antagonistic effect of increased precipitation and nitrogen addition on soil respiration in a semiarid steppe
Changes in water and nitrogen (N) availability due to climate change and atmospheric N deposition could have significant effects on soil respiration, a major pathway of carbon (C) loss from terrestrial ecosystems. A manipulative experiment simulating increased precipitation and atmospheric N deposition has been conducted for 9 years (2005–2013) in a semiarid grassland in Mongolian Plateau, China. Increased precipitation and N addition interactively affect soil respiration through the 9 years. The interactions demonstrated that N addition weakened the precipitation-induced stimulation of soil respiration, whereas increased precipitation exacerbated the negative impacts of N addition. The main effects of increased precipitation and N addition treatment on soil respiration were 15.8% stimulated and 14.2% suppressed, respectively. Moreover, a declining pattern and 2-year oscillation were observed for soil respiration response to N addition under increased precipitation. The dependence of soil respiration upon gross primary productivity and soil moisture, but not soil temperature, suggests that resources C substrate supply and water availability are more important than temperature in regulating interannual variations of soil C release in semiarid grassland ecosystems. The findings indicate that atmospheric N deposition may have the potential to mitigate soil C loss induced by increased precipitation, and highlight that long-term and multi-factor global change studies are critical for predicting the general patterns of terrestrial C cycling in response to global change in the future
DIACHRONOUS EVOLUTION OF BACK-ARC BASINS IN THE SOUTH TIANSHAN: INSIGHTS FROM STRUCTURAL, GEOCHRONOLOGICAL AND GEOCHEMICAL STUDIES OF THE WUWAMEN OPHIOLITE MÉLANGE
The South Tianshan is located to the north of the Tarim block and defines the southern margin of the Paleozoic Central Asian Orogenic Belt (CAOB). This study presents new structural data, geochronological and geochemical results for the Wuwamen ophiolite mélange in the Chinese segment of the South Tianshan. In the south, the Wuwamen ophiolite mélange shows typical block-in-matrix fabrics and occurs in the footwall of a south-dipping thrust fault, hanging wall of which is composed of weakly metamorphosed and deformed Lower Paleozoic marine to deep marine sequences from the South Tianshan. In the north, a southdipping thrust fault juxtaposes the Wuwamen ophiolite mélange in its hanging wall against the high-grade and strongly deformed metasedimentary rocks from the Central Tianshan in its footwall.The South Tianshan is located to the north of the Tarim block and defines the southern margin of the Paleozoic Central Asian Orogenic Belt (CAOB). This study presents new structural data, geochronological and geochemical results for the Wuwamen ophiolite mélange in the Chinese segment of the South Tianshan. In the south, the Wuwamen ophiolite mélange shows typical block-in-matrix fabrics and occurs in the footwall of a south-dipping thrust fault, hanging wall of which is composed of weakly metamorphosed and deformed Lower Paleozoic marine to deep marine sequences from the South Tianshan. In the north, a southdipping thrust fault juxtaposes the Wuwamen ophiolite mélange in its hanging wall against the high-grade and strongly deformed metasedimentary rocks from the Central Tianshan in its footwall
PlantQTL-GE: a database system for identifying candidate genes in rice and Arabidopsis by gene expression and QTL information
We have designed and implemented a web-based database system, called PlantQTL-GE, to facilitate quantitatine traits locus (QTL) based candidate gene identification and gene function analysis. We collected a large number of genes, gene expression information in microarray data and expressed sequence tags (ESTs) and genetic markers from multiple sources of Oryza sativa and Arabidopsis thaliana. The system integrates these diverse data sources and has a uniform web interface for easy access. It supports QTL queries specifying QTL marker intervals or genomic loci, and displays, on rice or Arabidopsis genome, known genes, microarray data, ESTs and candidate genes and similar putative genes in the other plant. Candidate genes in QTL intervals are further annotated based on matching ESTs, microarray gene expression data and cis-elements in regulatory sequences. The system is freely available at
Targeting LOXL2 for cardiac interstitial fibrosis and heart failure treatment
Interstitial fibrosis plays a key role in the development and progression of
heart failure. Here, we show that an enzyme that crosslinks collagen—Lysyl
oxidase-like 2 (Loxl2)—is essential for interstitial fibrosis and mechanical
dysfunction of pathologically stressed hearts. In mice, cardiac stress
activates fibroblasts to express and secrete Loxl2 into the interstitium,
triggering fibrosis, systolic and diastolic dysfunction of stressed hearts.
Antibody-mediated inhibition or genetic disruption of Loxl2 greatly reduces
stress-induced cardiac fibrosis and chamber dilatation, improving systolic and
diastolic functions. Loxl2 stimulates cardiac fibroblasts through PI3K/AKT to
produce TGF-β2, promoting fibroblast-to-myofibroblast transformation; Loxl2
also acts downstream of TGF-β2 to stimulate myofibroblast migration. In
diseased human hearts, LOXL2 is upregulated in cardiac interstitium; its
levels correlate with collagen crosslinking and cardiac dysfunction. LOXL2 is
also elevated in the serum of heart failure (HF) patients, correlating with
other HF biomarkers, suggesting a conserved LOXL2-mediated mechanism of human
HF
Role of A2B adenosine receptor signaling in adenosine-dependent pulmonary inflammation and injury.
Adenosine has been implicated in the pathogenesis of chronic lung diseases such as asthma and chronic obstructive pulmonary disease. In vitro studies suggest that activation of the A2B adenosine receptor (A2BAR) results in proinflammatory and profibrotic effects relevant to the progression of lung diseases; however, in vivo data supporting these observations are lacking. Adenosine deaminase-deficient (ADA-deficient) mice develop pulmonary inflammation and injury that are dependent on increased lung adenosine levels. To investigate the role of the A2BAR in vivo, ADA-deficient mice were treated with the selective A2BAR antagonist CVT-6883, and pulmonary inflammation, fibrosis, and airspace integrity were assessed. Untreated and vehicle-treated ADA-deficient mice developed pulmonary inflammation, fibrosis, and enlargement of alveolar airspaces; conversely, CVT-6883-treated ADA-deficient mice showed less pulmonary inflammation, fibrosis, and alveolar airspace enlargement. A2BAR antagonism significantly reduced elevations in proinflammatory cytokines and chemokines as well as mediators of fibrosis and airway destruction. In addition, treatment with CVT-6883 attenuated pulmonary inflammation and fibrosis in wild-type mice subjected to bleomycin-induced lung injury. These findings suggest that A2BAR signaling influences pathways critical for pulmonary inflammation and injury in vivo. Thus in chronic lung diseases associated with increased adenosine, antagonism of A2BAR-mediated responses may prove to be a beneficial therapy
A Mid-infrared Flare in the Active Galaxy MCG-02-04-026: Dust Echo of a Nuclear Transient Event
We report the discovery of a mid-infrared (MIR) flare using Wide field Infrared Survey Explorer data in the center of the nearby Seyfert 1.9 galaxy MCG-02-04-026. The MIR flare began in the first half of 2014, peaked around the end of 2015, and faded in 2017. During these years, energy of more than 7 × 10⁵⁰ erg was released in the infrared, and the flare's MIR color was generally turning red. We detected neither optical nor ultraviolet (UV) variation corresponding to the MIR flare based on available data. We explained the MIR flare using a dust echo model in which the radiative transfer is involved. The MIR flare can be well explained as thermal reradiation from dust heated by UV–optical photons of a primary nuclear transient event. Although the transient event was not seen directly owing to dust obscuration, we can infer that it may produce a total energy of at least ~10⁵¹ erg, most of which was released in less than ~3 yr. The nature of the transient event could be a stellar tidal disruption event by the central supermassive black hole (SMBH), or a sudden enhancement of the existing accretion flow onto the SMBH, or a supernova that was particularly bright
Combined lineage tracing and scRNA‐seq reveal the activation of Sox9 + cells in renal regeneration with PGE 2 treatment
Uncovering mechanisms of endogenous regeneration and repair through resident stem cell activation will allow us to develop specific therapies for injuries and diseases by targeting resident stem cell lineages. Sox9+ stem cells have been reported to play an essential role in acute kidney injury (AKI). However, a complete view of the Sox9+ lineage was not well investigated to accurately elucidate the functional end state and the choice of cell fate during tissue repair after AKI. To identify the mechanisms of fate determination of Sox9+ stem cells, we set up an AKI model with prostaglandin E2 (PGE2) treatment in a Sox9 lineage tracing mouse model. Single‐cell RNA sequencing (scRNA‐seq) was performed to analyse the transcriptomic profile of the Sox9+ lineage. Our results revealed that PGE2 could activate renal Sox9+ cells and promote the differentiation of Sox9+ cells into renal proximal tubular epithelial cells and inhibit the development of fibrosis. Furthermore, single‐cell transcriptome analysis demonstrated that PGE2 could regulate the restoration of lipid metabolism homeostasis in proximal tubular epithelial cells by participating in communication with different cell types. Our results highlight the prospects for the activation of endogenous renal Sox9+ stem cells with PGE2 for the regenerative therapy of AKI
- …