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Abstract
Changes in water and nitrogen (N) availability due to climate change and atmospheric 
N deposition could have significant effects on soil respiration, a major pathway of 
carbon (C) loss from terrestrial ecosystems. A manipulative experiment simulating 
 increased precipitation and atmospheric N deposition has been conducted for 9 years 
(2005–2013) in a semiarid grassland in Mongolian Plateau, China. Increased precipita-
tion and N addition interactively affect soil respiration through the 9 years. The inter-
actions demonstrated that N addition weakened the precipitation- induced stimulation 
of soil respiration, whereas increased precipitation exacerbated the negative impacts 
of N addition. The main effects of increased precipitation and N addition treatment on 
soil respiration were 15.8% stimulated and 14.2% suppressed, respectively. Moreover, 
a declining pattern and 2- year oscillation were observed for soil respiration response 
to N addition under increased precipitation. The dependence of soil respiration upon 
gross primary productivity and soil moisture, but not soil temperature, suggests that 
resources C substrate supply and water availability are more important than tempera-
ture in regulating interannual variations of soil C release in semiarid grassland ecosys-
tems. The findings indicate that atmospheric N deposition may have the potential to 
mitigate soil C loss induced by increased precipitation, and highlight that long- term 
and multi- factor global change studies are critical for predicting the general patterns 
of terrestrial C cycling in response to global change in the future.

K E Y W O R D S

carbon cycling, climate change, grassland, long-term dynamics, resource availability

1  | INTRODUCTION

Soil respiration releases 75–80 Pg CO2- C per year from soil to the 
atmosphere, which is ~11 times of the carbon (C) released from fos-
sil fuel combustion, and contributes significantly to global C cycling 
(Raich & Potter, 1995; Raich, Potter, & Bhagawati, 2002; Raich & 
Schlesinger, 1992). Soil respiration, constituted of autotrophic res-
piration and heterotrophic respiration, is generally recognized to be 

regulated by three fundamental driving factors (i.e., soil temperature, 
water availability, and C substrate). Changes in climate (e.g., climate 
warming and changing precipitation regime) and atmospheric compo-
sition (e.g., greenhouse gas enrichment and active nitrogen (N) deposi-
tion; Erisman, Galloway, Seitzinger, Bleeker, & Butterbach- Bahl, 2011; 
Gruber & Galloway, 2008) could profoundly influence soil respiration 
through altering its three driving factors, with consequent feedbacks 
to atmospheric CO2 concentration and climate change (Flanagan, 
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Sharp, & Letts, 2013; Gomez- Casanovas, Hudiburg, Bernacchi, Parton, 
& DeLucia, 2016; Liu et al., 2016; Suseela, Conant, Wallenstein, & 
Dukes, 2012; Yan, Chen, Huang, & Lin, 2011).

Changing precipitation regimes (Zhang et al., 2007) and atmo-
spheric N deposition (Erisman et al., 2011; Gruber & Galloway, 2008) 
can both affect plant growth and C uptake via altering soil water 
and N availability especially in ecosystems where they are limited 
(LeBauer & Treseder, 2008; Niu et al., 2008), with consequent im-
pacts on autotrophic and heterotrophic soil respiration. Numerous 
previous studies have reported soil respiration responses to pre-
cipitation change (Flanagan et al., 2013; Liu et al., 2016; Suseela 
et al., 2012; Wan, Norby, Ledford, & Weltzin, 2007; Yan et al., 2011) 
or N addition (Chen, Li, Lan, Hu, & Bai, 2016; Graham et al., 2014; 
Janssens et al., 2010; Ramirez, Craine, & Fierer, 2012), but few have 
investigated the combined effects of these two factors (Eisenhauer, 
Cesarz, Koller, Worm, & Reich, 2012; Hungate, Hart, Selmants, Boyle, 
& Gehring, 2007; Niu et al., 2009). Meta- analyses have revealed that 
the responses of plant biomass to N addition increase with mean an-
nual precipitation (Harpole, Potts, & Suding, 2007; Xia & Wan, 2008). 
Effects of increased precipitation on ecosystem C exchange varied 
with N addition (Harpole et al., 2007; Niu et al., 2009). Considering 
that soil respiration consumes and is ultimately under the control of 
C substrate from ecosystem productivity (Wertin, Belnap, & Reed, 
2017; Yan et al., 2011) due to the biochemical processes of plant 
roots and soil microorganisms, it is reasonable to predict that pre-
cipitation change and N addition could also interactively impact soil 
respiration.

Biological components including plants and soil microorganisms 
in natural ecosystems have well adapted to environmental fluctua-
tions during their evolutionary history. When facing abrupt changes 
of global change driving factors, especially in manipulative experi-
ments (Klironomos et al., 2005; Luo & Reynolds, 1999), plants and 
soil microorganisms may adjust the physiological activities, leading 
to different short-  and long- term response patterns of soil respira-
tion to climate change (Melillo et al., 2002; Nielsen & Ball, 2015). 
Moreover, changes in plant community composition and soil nutri-
ent status due to long- term study duration would also alter effects 
of experimental treatment on ecosystem functions (Fry et al., 2013; 
LeBauer & Treseder, 2008). Thus, findings of the short- term studies 
(Flanagan et al., 2013; Suseela et al., 2012; Yan et al., 2011) may not 
be able to predict long- term responses of soil respiration as effects of 
experimental treatments do not always remain consistent over differ-
ent temporal scales (Blankinship, Niklaus, & Hungate, 2011; Tilman, 
Reich, & Isbell, 2012; Zhou et al., 2014). For example, a previous 
study has reported that the positive effects of increased precipita-
tion on soil respiration could be intensified with time in a semiarid 
grassland during a 3- year field experiment (Liu, Zhang, & Wan, 2009). 
Positive impacts of N enrichment on soil microbes are likely observed 
at experimental sites with shorter durations (Treseder, 2008), but 
may disappear over a long term (Bowden, Davidson, Savage, Arabia, 
& Steudler, 2004). Moreover, the temporal variations of soil respira-
tion to N addition are often observed under ambient precipitation 
(Chen et al., 2016; Zhou et al., 2014). It is still unknown whether the 

long- term response pattern of soil respiration to N addition would 
change under different precipitation scenarios.

A 9- year field manipulative experiment with increased precipitation 
and N addition has been conducted since 2005 in a semiarid grass-
land in northern China where precipitation and N are both limited (Liu 
et al., 2009; Niu et al., 2008). Based on the previous studies, the fol-
lowing questions were addressed: (1) did increased precipitation and 
N addition interactively impact on soil respiration; (2) and did effects 
of increased precipitation or N addition on soil respiration change at 
different temporal scales.

2  | MATERIALS AND METHODS

2.1 | Site description

This study was part of Duolun Global Change Multiple- factor 
Experiment (GCME- Duolun) located in a temperate steppe in Duolun 
County (42°11′N, 116°48′E, 1324 m a.s.l) of the Inner Mongolia 
Autonomous Region, China. The long- term (1960–2013) mean an-
nual precipitation (MAP) in the local area is 374.5 mm, with ~90% 
distributed between May and October. Mean monthly temperature 
varies from −17.3°C in January to 19.1°C in July, and mean annual 
air temperature (MAT) is 2.4°C (China Meteorological Administration). 
The soil type is Haplic Calcisols according to FAO classification, or 
chestnut in Chinese classification. Soil in the study area is consti-
tuted of 16.95% clay, 20.30% silt, and 62.75% sand (Niu et al., 2008).
Vegetation of the typical temperate steppe is dominated by Artemisia 
frigida, Leymus chinensis, Stipa krylovii, Potentilla acaulis, Cleistogenes 
squarrosa, Agropyron cristatum, and Allium bidentatum with average 
coverage of approximately 30%, 10%, 7%, 5%, 4%, 2%, and 1%, re-
spectively in 2013. For more details of plant species see Yang et al. 
(2011) in the same study site. The growing season lasts from May to 
October.

2.2 | Experimental design

The GCME- Duolun experiment (http://gce.henu.edu.cn/english/
EXP3-GCME-Duolun.htm) was initiated in April 2005 and included 
four factors: mowing, N and phosphorus addition, increased precipi-
tation, and warming. This study was part of GCME- Duolun experi-
ment, which employed a factorial design with four blocks (Figure 1). 
There were four treatments in each block (see Niu et al., 2009 for 
detailed information). The four treatments included control (C), in-
creased precipitation (P), N addition (N), and increased precipitation 
plus N addition (PN). The total number of plots was 16 (Figure 1). 
Moreover, there were another 16 plots with the same treatments 
(i.e., C, P, N, and PN) adjacent to the study site, except that the 16 
plots were assigned to four blocks with mowing at the end of August 
each year. In the increased precipitation plots, there were six sprin-
klers which were evenly distributed in two rows (image in the top left 
corner of Figure 1). The six sprinklers covered the whole increased 
precipitation plots. Fifteen millimeter water was added weekly in July 
and August each year under the increased precipitation treatment. 

http://gce.henu.edu.cn/english/EXP3-GCME-Duolun.htm
http://gce.henu.edu.cn/english/EXP3-GCME-Duolun.htm
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The total amount of precipitation added was 120 mm each year, 
which was approximately 30% of mean annual precipitation in this 
area. Nitrogen was added in the form of urea (10 g N m−2 year−1) 
once a year in the middle of July. The N addition level was close to 
the maximum deposition rate in northern China (He, Liu, Fangmeier, 
& Zhang, 2007).

2.3 | Soil respiration, soil temperature, and 
soil moisture

A PVC collar (11 cm in diameter and 5 cm in height) was permanently 
inserted 2.8 cm into soil in each plot. Soil respiration in the grow-
ing season was measured twice a month from 2005 to 2010, and 
three times a month from 2011 to 2013 with a Li- 8100 portable 
soil CO2 fluxes system (Li- Cor Inc., Lincoln, NE, USA). Soil respiration 
measurements were performed between 9:00 a.m. and 12:00 a.m. 
to eliminate diurnal variations. Aboveground parts of living plants 
inside the PVC collars were removed 2–3 days before soil respira-
tion measurements and were left inside the collars to decompose. 
Furthermore, if there was a rainfall event, the measurement was car-
ried out 2–3 days later to reduce the pulse effects of precipitation 
on soil respiration.

Soil temperature at the depth of 10 cm was measured at the same 
time with the measurement of soil respiration using a thermocouple 
probe (Li- 8100- 201) attached to the Li- 8100. Soil moisture (% m3/m3) 
of 0–10 cm was measured with a Diviner- 2000 Portable Soil Moisture 
Probe (Sentek Pty Ltd., Balmain, Australia) twice a month in 2005–
2007, and 3–6 times a month in 2008–2013.

2.4 | Gross ecosystem productivity

Gross ecosystem productivity (GEP) was calculated as follows:

where NEE is net ecosystem C exchange, and ER is ecosystem 
 respiration. Both NEE and ER were measured with a transparent 
chamber (0.5 × 0.5 × 0.5 m3) attached to an infrared gas analyzer 
(IRGA; Li- 6400; Li- Cor, Lincoln, NE, USA). During the measurements 
of NEE, the chamber was put on the aluminum frame inserted in each 
plot to record the CO2 concentrations. ER was measured using the 
same method except that the chamber was covered with an opaque 
cloth. For more information about the measurement of NEE and ER 
see Xia, Niu, and Wan (2009).

2.5 | Root biomass

Three 40- cm- deep hole was excavated with a soil auger (5- cm internal 
diameter) in each plot at the end of August since 2009. Soil was sieved 
through a 2- mm screen, and roots were washed and dried (65°C for 
48 hr) to measure the root biomass. Root biomass was expressed as 
the weight in unit area in one growing season.

2.6 | Vegetation sampling

There was one permanent quadrat (1 × 1 m) in each plot. A frame 
equally separated into 100 grids (10 × 10 cm) was put above the 
quadrat to investigate the structure of plant community in August 
every year when plant biomass was at the peak. For more details of 
vegetation measurements see Yang et al. (2011). Species diversity (D; 
Romme, 1982) was calculated using the modified Simpson index ex-
pressed as the following equation:

where Ni is the number of individuals of plant species i, and N is the 
total number of plants species in each quadrant.

2.7 | Data analysis

The growing- season averages of each index were calculated from the 
monthly mean values. The monthly means of each growing season 
and the seasonal means of soil respiration, temperature, and moisture 
were tested using a mixed- effects model with repeated measurements 
(Proc Mixed, SAS 8.1; SAS Institute Inc., Cary, NC, USA). Precipitation 
and nitrogen treatments were fixed factors, and plots were assigned 
as random factors. First- order autoregressive structure (AR (1)) was 
chosen as the covariance structure according to akaike information 
criterion (AIC). Effects of increased precipitation on soil respiration 
were calculated as [100 × (P − Control)/Control] without N addition 
and [100 × (PN − N)/N] with N addition. N effects were calculated 
as [100 × (N − Control)/Control] in ambient precipitation plots and 
[100 × (PN − P)/P] under increased precipitation. Precipitation and 
N effects were calculated using the seasonal mean values. Simple 
regression analysis and stepwise multiple linear analyses were used 
to test the relationships of soil respiration with soil temperature, soil 
moisture, and GEP. All statistical analyses were conducted using SAS 
V.8.1 software (SAS Institute Inc., Cary, NC, USA).GEP=ER−NEE

D=− ln
[

∑

(Ni∕N)
2
]

F IGURE  1 Site layout of the study
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3  | RESULTS

3.1 | Soil temperature and soil moisture

During the whole experimental period from 2005 to 2013, growing- 
season mean soil temperature (15.8°C) ranged from 15.1 to 17.2°C 
in the control plots (Figure 2a). Increased precipitation, N addition, or 
their interactions did not affect soil temperature (all p > .05, Table 1). 

Growing- season mean soil moisture varied over years (p < .001, 
Table 1), ranging from 7.24% in 2009 to 12.45% in 2013 in the control 
plots with an average value of 9.96% across the 9 years (Figure 2b). 
Increased precipitation stimulated soil moisture by 1.48% (absolute 
change). Neither N addition nor its interaction with increased pre-
cipitation affected soil moisture (Table 1). However, the effects of in-
creased precipitation changed with year (p < .001, Table 1). Increased 

F IGURE  2 Growing- season mean soil 
temperature (a), soil moisture (b), and soil 
respiration (c) under different treatments 
over the 9 years. C, the control; P, the 
increased precipitation; N, the nitrogen 
addition; PN, the increased precipitation 
plus nitrogen addition. Error bars indicate 
± SE (n = 4)
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precipitation stimulated soil moisture over the 9 years (p < .05) except 
that in 2007, 2010, and 2012.

3.2 | Effects of increased precipitation and N 
addition on soil respiration

There were strong interannual variations of soil respiration during the 
9- year experimental period (F = 150.6, p < .001), with seasonal mean 
soil respiration in the control plots ranging from 1.22 μmol m−2 s−1 in 
2012 to 2.41 μmol m−2 s−1 in 2006 (Figure 2c). Increased precipita-
tion, N addition, and their interactions had significant influences on 
soil respiration over the 9 years (all p < .001, Table 1). Mean soil res-
piration was enhanced by 15.8% under increased precipitation. By 
contrast, N addition suppressed soil respiration by 14.2%. Increased 
precipitation stimulated soil respiration by 28.4% without N addition 
and by 2.7% with N addition, whereas N addition reduced soil respi-
ration by 3.3% and 22.7% in the ambient and elevated precipitation 
plots, respectively. The main effects of increased precipitation and 
N addition on soil respiration varied with year (all p < .01, Table 1). 

Increased precipitation stimulated soil respiration by 24.0%, 14.4%, 
27.8%, 43.3%, 21.0%, and 14.1% in 2007, 2008, 2009, 2010, 2011, 
and 2013, respectively, marginally decreased it in 2005 (p < .10), but 
had no impacts in 2006 and 2012 (both p > .10, Figure 2c, Table 2). N 
addition reduced soil respiration in eight of the 9 years except for the 
year of 2006 (Figure 2c, Table 2).

Effects of increased precipitation on soil respiration depended 
on N addition in seven of 9 years (Table 2). The precipitation- induced 
changes in soil respiration were substantially lower or even became 
negative with N addition (Figure 3a). Under the ambient precipitation, 
N addition generally decreased soil respiration across the 9 years ex-
cept in 2006 and 2010. Increased precipitation amplified the negative 
responses of soil respiration to N addition during the whole experi-
mental period (Figure 3b).

3.3 | Long- term effects of increased 
precipitation and N addition on soil respiration

During the 9- year experimental period, the precipitation- induced 
changes in soil respiration showed larger interannual variability than 

TABLE 1 Results (F- values) of repeated measures ANOVAs on the 
effects of increased precipitation (P), nitrogen addition (N), year (yr), and 
their potential interactions on soil temperature (ST, °C), soil moisture 
(SM, %m3/m3), and soil respiration (SR, μmol m−2 s−1) from 2005 to 2013

Source of 
variation df ST SM SR

Block 3 14.35*** 1.35 3.34*

P 1 1.37 18.74*** 43.85***

N 1 2.03 0.67 48.10***

P*N 1 0.08 0.02 30.55***

Yr 8 22.29*** 125.09*** 150.61***

P*yr 8 0.97 4.60*** 5.95***

N*yr 8 2.60* 1.54 4.00***

P*N*yr 8 0.25 1.39 1.60

Significant level: *p < .05, **p < .01, ***p < .001.

TABLE  2 Results (F- values) of repeated measures of ANOVAs on 
the effects of increased precipitation (P), nitrogen addition (N), and 
their potential interactions on soil respiration in each growing season

Season Block P N P*N

DF 3 1 1 1

2005 8.07** 6.79^ 32.87* 18.30*

2006 5.69* 2.20 0.01 5.39*

2007 17.54*** 12.34** 8.75* 4.59^

2008 0.15 8.65* 6.46* 2.69

2009 5.98* 15.27** 18.31** 3.44^

2010 11.11** 44.80*** 4.56^ 9.61**

2011 7.78** 17.49** 22.88*** 17.79**

2012 9.40** 1.11 7.02* 0.87

2013 5.20* 5.52* 17.43** 6.58*

Significant level: ^p < .10, *p < .05, **p < .01, ***p < .001.

F IGURE  3 The percentage change of soil respiration induced 
by the increased precipitation (a) and the nitrogen addition (b) from 
2005 to 2013. p- value in the figure represents the significant test of 
difference of precipitation effects between N addition and without 
N addition, or the difference of N effects between ambient and 
increased precipitation treatments
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the N- induced changes in soil respiration (Figure 3). Nitrogen addition- 
induced changes in soil respiration showed a declined trend with time 
under the increased precipitation (R2 = 0.40, p = .067, Figure 3b), 
but not under the ambient precipitation. The declined pattern of N 
addition- induced changes under the increased precipitation was also 
observed in another study site with mowing (R2 = 0.81, p = .001, 
Figure 4). The responses of soil respiration to N addition showed a 
2- year oscillation during the whole experimental period under the in-
creased precipitation (Figures 3b and 5). A similar 2- year oscillation 
was also observed for the growing- season (May to October) pre-
cipitation amount from 2005 to 2013 (Figure 5). The two oscillation 
patterns were synchronous and positively correlated with each other 
(R2 = 0.665, p = .007; Figure 5 inset).

3.4 | Control factors over the interannual 
variability of soil respiration

Three main explanatory factors (i.e., soil temperature, soil moisture, and 
GEP) were used to explain the interannual variability of soil respiration 
in the long- term experiment. Although soil respiration increased expo-
nentially with soil temperature within each growing season (all p < .05), 
growing- season mean soil respiration did not show significant relation-
ships with growing- season mean soil temperature over the 9 years. 
Results of linear regression model demonstrated that soil moisture and 
GEP contributed 38% and 33% of the year- to- year variability of soil res-
piration, respectively (Figure 6). The stepwise multiple linear analyses 
revealed that the combination of soil moisture and GEP explained 50% 
variations of soil respiration (p < .0001). In addition, changes of GEP in-
duced by increased precipitation in plots without N addition were larger 
than plots with N addition. N addition increased GEP in plots with am-
bient precipitation, but reduced it in plots with increased precipitation 
(Figure 7a,c), resulting in no effects of N addition on GEP. Root biomass, 
as component of GEP, showed similar pattern in response to increased 
precipitation and N addition. Nitrogen addition suppressed the positive 
effects of increased precipitation on root biomass, and even turn it into 
negative effects (Figure 7b). Increased precipitation also changed the 

F IGURE  4 Nitrogen- induced change of soil respiration (R) under 
increased precipitation in the plots with mowing
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effect of N addition on root biomass from positive to negative effects 
(Figure 7d). In addition, soil respiration was positively correlated with 
plant species diversity (Figure 8) which showed a declining pattern under 
N addition treatment over the 9 years (R2 = 0.621, p = .012; Figure 9).

4  | DISCUSSION

The 9- year manipulated study has examined responses of soil respiration 
to increased precipitation and N addition, and their interactive effects. 
In this study, soil respiration was interactively influenced by the posi-
tive effect of increased precipitation and negative effects of N addition. 
Furthermore, effects of precipitation and N on soil respiration changed 
with different temporal scales. The interannual variations of soil respi-
ration were positively correlated with explanatory factors, such as soil 
moisture, gross ecosystem productivity (GEP), plant species diversity.

4.1 | Antagonistic effects of increased 
precipitation and N on soil respiration

Although the antagonistic effect of increased precipitation and N ad-
dition on soil respiration (Figure 2) has not been reported before, a 

similar response pattern of gross ecosystem productivity (GEP) was 
observed for the first 4 years (2005–2008) in this same experiment 
(Niu et al., 2009), but not for plant biomass in a mesotrophic grassland 
ecosystem (Lee, Manning, Walker, & Power, 2014). Given that soil 
respiration is substrate- regulated processes and GEP can provide C 
substrate for root and soil microbial respiration (Flanagan et al., 2013; 
Yan et al., 2011). Plant photosynthesis, growth and productivity rep-
resented by GEP can regulate soil respiration and its response to envi-
ronmental change (Bai et al., 2010; Tang, Misson, Gershenson, Cheng, 
& Goldstein, 2005; Wertin et al., 2017). The positive dependence of 
soil respiration upon GEP (Figure 6) supported the above argument. In 
addition, the smaller precipitation- induced enhancement of GEP with 
N addition than without N addition over the 9 years could largely ex-
plain the lower precipitation effect on soil respiration under N enrich-
ment (Figure 7a). Similarly, N addition stimulated GEP under ambient 
precipitation, but decreased it under increased precipitation over the 
9 years (Figure 7c), which could partly contribute to the exacerbated 
negative N responses of soil respiration under the increased precipita-
tion scenarios.

Furthermore, enhanced soil water availability can contribute 
to higher diffusion rate and provide microbes and its extracellular 
enzyme to have more access to gain C substrates for respiration 

F IGURE  7 Effects of increased 
precipitation on gross ecosystem 
productivity (GEP, a) and belowground 
biomass (b) in plots without and with 
nitrogen addition, and effects of nitrogen 
addition on gross ecosystem productivity 
(GEP, c) and root biomass (d) in ambient 
and increased precipitation plots.  
p- values represent the significant 
difference between the two bars
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(Davidson & Janssens, 2006; Manzoni, Schimel, & Porporato, 2012), 
especially in water- limited ecosystem. Therefore, increased precip-
itation in the semiarid grassland stimulates soil respiration due to 
the enhanced soil water availability (Wu, Dijkstra, Koch, PeÑUelas, & 
Hungate, 2011). However, soil water availability is not altered under 
N addition, as plant community could balance the evaporation and 
transpiration to maintain a relatively constant evapotranspiration 
(Tian et al., 2016). Increased precipitation and N addition have no 
interaction on soil water content, but the two resources do inter-
actively affect soil respiration. Therefore, although soil respiration 
positively depends on soil water availability, different changes on soil 
water content might not be the reason to explain the interaction on 
soil respiration.

Plant species diversity, as an integrated index, could indirectly 
affect soil respiration due to changes in plant and microbial com-
munity composition and structure which would therefore affect the 
three main control factors (i.e., soil temperature, soil moisture, and 
GEP) and the activity of soil microorganisms (Compton, Watrud, 

Porteous, & DeGrood, 2004; Kardol, Cregger, Campany, & Classen, 
2010; Steinauer et al., 2015). Therefore, reduction in plant diversity 
(Yang et al., 2011) in combination with no response of soil moisture 
and GEP under N addition would have resulted in the reduction of soil 
respiration. In addition, soil pH has been reported to be reduced by N 
addition in the same study ecosystem of GCME- Duolun experiment 
(Chen et al., 2014). As pH could suppress soil microbial community 
structure and activities (Bowden et al., 2004), the decreased soil pH 
could also partly contribute to the negative effects of N addition on 
soil respiration. Previous study has reported that increased soil water 
content could stimulate soil N availability (Borken & Matzner, 2009; 
Giese, Gao, Lin, & Brueck, 2011; Manzoni et al., 2012). Given that N 
enrichment has negative effect on soil respiration, the stimulation of N 
availability induced by increased precipitation could further intensify 
the negative impacts of N addition on soil respiration. Moreover, with 
the mitigation of limited resources, such as soil water and N availabil-
ity, belowground C allocation from GEP would be reduced as less C 
substrate was needed for plant root and soil microorganisms to obtain 
water or N from soil (Moorhead & Sinsabaugh, 2006; Suseela & Dukes, 
2013). The assumption is supported by the decreased and negative 
responses of root biomass induced by increased precipitation in N 
addition plots, and induced by N addition in increased precipitation 
plots in this study (Figure 7b,d). Considering that respiration of root 
and associated rhizosphere microbes constitutes large proportion to 
total soil respiration, the interactive effects of increased precipitation 
and N addition on root biomass could also explain the antagonistic 
responses of the two resources.

4.2 | The declining pattern of N- induced change in 
soil respiration

A meta- analysis has reported a declining trend of N effects on soil 
respiration with experimental duration in forest ecosystems, but not 
in grassland ecosystems which might be eliminated by the manage-
ment practice, for example, mowing or grazing (Zhou et al., 2014). 
However, results in our study were not consistent with the assump-
tion from the meta- analysis in grassland ecosystems. As mowing was 
also considered a treatment factor in GCME- Duolun, another 16 
plots with the same treatments (i.e., C, P, N, and PN) in this study 
were mowed at the end of August once a year. Plant aboveground 
parts were removed out of plots with the mowing treatment. In the 
mown plots, the exacerbated negative effect of N addition under 
increased precipitation did not disappear (R2 = 0.811, p < .001, 
Figure 4), indicating that mowing might not be able to eliminate the 
decreasing trend of N effect. Further studies are needed to better 
understand mechanisms of mowing effects on soil respiration as 
mowing also plays important roles on ecosystem functions in grass-
land ecosystems.

Plant species diversity could positively impact soil respiration 
(p = .002; Figure 8) by enhancing the quantity of C substrate due to 
increase in ecosystem productivity (Tilman et al., 2012) and by en-
hancing the biomass and activity of soil microorganisms and nema-
todes (Steinauer et al., 2015) due to the various and high quality of C 

F IGURE  8 Relationship of soil respiration with plant species 
diversity. Each data point represents the average in each of the four 
treatments from 2005 to 2013

0.4

1.0

1.6

2.2

2.8

3.4

0.4 0.8 1.2 1.6 2.0 2.4

R2 = 0.24
p =  .002So

il 
re

sp
ir

at
io

n 
(μ

m
ol

 m
–2

 s–
1 )

Diversity

F IGURE  9 Effect of nitrogen addition on plant species diversity 
changed with experimental duration

–1.0

–0.8

–0.6

–0.4

–0.2

0.0

0.2

2004 2006 2008 2010 2012 2014
Year

N
-in

du
ce

d 
ch

an
ge

 in
 d

iv
er

si
ty R2 = 0.621

p = .012



10812  |     HAN et Al.

substrate in high- diversity plant community. Therefore, the N- induced 
decrease in plant species diversity (Figure 9) could contribute to the 
declining pattern of soil respiration with increasing duration of N ad-
dition treatment. In addition to the management practice and plant 
species diversity, the cumulative changes in microbial community 
composition (Frey, Knorr, Parrent, & Simpson, 2004) and soil acidifi-
cation (Chen et al., 2014, 2016; Liu et al., 2014) induced by N addition 
treatment could also account for the temporal variation of soil respira-
tion responses to N addition.

4.3 | Long- term oscillations of N effect on soil 
respiration under increased precipitation

Oscillations of the response of plant production or biomass to climate 
change have been reported with experimental duration (Haddad, 
Tilman, & Knops, 2002; Tilman & Wedin, 1991). For example, Haddad 
et al. (2002) observed oscillations of plant biomass persisting for 
9 years which was probably caused by litter dynamics, not by the an-
nual variation of precipitation. However, in our study, the interannual 
variation of precipitation in the growing season from 2005 to 2013 
synchronized with the oscillation pattern of N effects on soil respi-
ration under the increased precipitation treatment (Figure 3), which 
is supported by the significant relationship between soil respiration 
change and precipitation (R2 = 0.665, p = .007). Therefore, interannual 
precipitation variability could partly explain the two- year oscillations 
on soil respiration responses to N enrichment under elevated precipi-
tation in this study.

Moreover, other two possible reasons could help explain the above 
oscillation pattern. First, litters play important roles in regulating plant 
growth, C substrate supply, and soil respiration changes in grasslands 
(Haddad et al., 2002; Wang et al., 2011). Greater plant growth and lit-
ter production in the year with higher precipitation often leads to light 
limitation which could suppress plant growth, litter production, and 
C substrate supply for plant roots and soil microorganism in the next 
year (Tilman & Wedin, 1991). This could affect interannual variations 
of soil respiration and its response to N addition. Second, greater litter 
accumulation in the previous high- precipitation year may lead to en-
hanced litter decomposition and N release in the next year, especially 
under the N addition plus elevated precipitation treatment, which 
could further exacerbate the negative impacts of soil N enrichment 
on soil respiration (see the first section of Discussion). Unfortunately, 
no data on litter production from 2005 to 2013 were available to ex-
amine this argument directly in this study. However, the effect of litter 
could be examined indirectly using data from the mowed plots in the 
GCME- Duolun where most parts of aboveground plant biomass were 
removed out of the plots at the end of August of each growing season. 
In the mown treatment, N effects on soil respiration in the increased 
precipitation plots did not show oscillations during the whole exper-
imental period (Figure 4), which supported the above argument that 
litter production dynamics might be an important factor in controlling 
the 2- year oscillations of soil respiration response. Nevertheless, fur-
ther study is needed to find out whether the 2- year oscillations would 
continue or not in the future.

In conclusion, using a 9- year long- term field experiment, we found 
antagonistic impacts of increased precipitation and N availability on 
soil respiration. The antagonistic effects of precipitation and N addi-
tion could be caused primarily by the interaction on C substrate supply 
from GEP and on belowground C allocation. The effects of increased 
precipitation on soil respiration depend on N addition, indicating that N 
deposition might mitigate soil CO2 emission due to the increased pre-
cipitation in semiarid grasslands. The N addition- induced declining and 
2- year oscillation patterns of soil respiration under elevated precipita-
tion during the whole experimental period could be probably caused by 
interannual variability of precipitation and dynamics of litter. The find-
ings highlight the importance of long- term multi- factor studies in pro-
jecting terrestrial C cycling in response to climate change in the future.
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