97 research outputs found

    Persistent hepatitis C virus infection in vitro: coevolution of virus and host.

    Get PDF
    The virological and cellular consequences of persistent hepatitis C virus (HCV) infection have been elusive due to the absence of the requisite experimental systems. Here, we report the establishment and the characteristics of persistent in vitro infection of human hepatoma-derived cells by a recently described HCV genotype 2a infectious molecular clone. Persistent in vitro infection was characterized by the selection of viral variants that displayed accelerated expansion kinetics, higher peak titers, and increased buoyant densities. Sequencing analysis revealed the selection of a single adaptive mutation in the HCV E2 envelope protein that was largely responsible for the variant phenotype. In parallel, as the virus became more aggressive, cells that were resistant to infection emerged, displaying escape mechanisms operative at the level of viral entry, HCV RNA replication, or both. Collectively, these results reveal the existence of coevolutionary events during persistent HCV infection that favor survival of both virus and host

    Unknown Sniffer for Object Detection: Don't Turn a Blind Eye to Unknown Objects

    Full text link
    The recently proposed open-world object and open-set detection achieve a breakthrough in finding never-seen-before objects and distinguishing them from class-known ones. However, their studies on knowledge transfer from known classes to unknown ones need to be deeper, leading to the scanty capability for detecting unknowns hidden in the background. In this paper, we propose the unknown sniffer (UnSniffer) to find both unknown and known objects. Firstly, the generalized object confidence (GOC) score is introduced, which only uses class-known samples for supervision and avoids improper suppression of unknowns in the background. Significantly, such confidence score learned from class-known objects can be generalized to unknown ones. Additionally, we propose a negative energy suppression loss to further limit the non-object samples in the background. Next, the best box of each unknown is hard to obtain during inference due to lacking their semantic information in training. To solve this issue, we introduce a graph-based determination scheme to replace hand-designed non-maximum suppression (NMS) post-processing. Finally, we present the Unknown Object Detection Benchmark, the first publicly benchmark that encompasses precision evaluation for unknown object detection to our knowledge. Experiments show that our method is far better than the existing state-of-the-art methods. Code is available at: https://github.com/Went-Liang/UnSniffer.Comment: CVPR 2023 camera-read

    Realizing strong photon blockade at exceptional points in the weak coupling regime

    Get PDF
    We theoretically prove that it is possible to realize strong photon blockade at n-order exceptional points (EPn) in a two-level quantum emitter (QE)–cavity quantum electrodynamics (QED) system even if the emitter–cavity coupling strength is weak. When the single-mode cavity is gain, we show that the ultrastrong single-photon blockade (1 PB) emerges at two-order exceptional points (EP2), avoiding the strong non-linearity of the system. In addition, we first give the pseudo-Hermitian condition for the non-Hermitian cavity QED system and find that the third-order exceptional points (EP3) can be predicted under certain constraints of the parameters. For this case, the pronounced 1 PB at EP3 will be triggered. Furthermore, we also consider the usual EP2-enhanced 1 PB existing in the system with or without the dipole–dipole interaction (DDI) under the pseudo-Hermitian condition. A striking feature is that the system without DDI can realize more obvious 1 PB at EP2 than the case of with DDI. What is important is that both EP2 and EP3 will appear in the weak coupling regime. Our proposal sheds new light on strong EP-engineered photon blockade in the weak coupling regime, providing a unique platform for making high-quality single-photon sources

    Distinguishing Emission-Associated Ambient Air PM2.5 Concentrations and Meteorological Factor-Induced Fluctuations

    Get PDF
    Although PM2.5 (particulate matter with aerodynamic diameters less than 2.5 μm) in the air originates from emissions, its concentrations are often affected by confounding meteorological effects. Therefore, direct comparisons of PM2.5 concentrations made across two periods, which are commonly used by environmental protection administrations to measure the effectiveness of mitigation efforts, can be misleading. Here, we developed a two-step method to distinguish the significance of emissions and meteorological factors and assess the effectiveness of emission mitigation efforts. We modeled ambient PM2.5 concentrations from 1980 to 2014 based on three conditional scenarios: realistic conditions, fixed emissions, and fixed meteorology. The differences found between the model outputs were analyzed to quantify the relative contributions of emissions and meteorological factors. Emission-related gridded PM2.5 concentrations excluding the meteorological effects were predicted using multivariate regression models, whereas meteorological confounding effects on PM2.5 fluctuations were characterized by probabilistic functions. When the regression models and probabilistic functions were combined, fluctuations in the PM2.5 concentrations induced by emissions and meteorological factors were quantified for all model grid cells and regions. The method was then applied to assess the historical and future trends of PM2.5 concentrations and potential fluctuations on global, national, and city scales. The proposed method may thus be used to assess the effectiveness of mitigation actions

    Impacts of air pollutants from rural Chinese households under the rapid residential energy transition

    Get PDF
    Rural residential energy consumption in China is experiencing a rapid transition towards clean energy, nevertheless, solid fuel combustion remains an important emission source. Here we quantitatively evaluate the contribution of rural residential emissions to PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 μm) and the impacts on health and climate. The clean energy transitions result in remarkable reductions in the contributions to ambient PM2.5, avoiding 130,000 (90,000-160,000) premature deaths associated with PM2.5 exposure. The climate forcing associated with this sector declines from 0.057 ± 0.016 W/m2 in 1992 to 0.031 ± 0.008 W/m2 in 2012. Despite this, the large remaining quantities of solid fuels still contributed 14 ± 10 μg/m3 to population-weighted PM2.5 in 2012, which comprises 21 ± 14% of the overall population-weighted PM2.5 from all sources. Rural residential emissions affect not only rural but urban air quality, and the impacts are highly seasonal and location dependent

    Effect of live poultry market interventions on influenza A(H7N9) virus, Guangdong, China

    Get PDF
    Since March 2013, three waves of human infection with avian influenza A(H7N9) virus have been detected in China. To investigate virus transmission within and across epidemic waves, we used surveillance data and whole-genome analysis of viruses sampled in Guangdong during 2013–2015. We observed a geographic shift of human A(H7N9) infections from the second to the third waves. Live poultry market interventions were undertaken in epicenter cities; however, spatial phylogenetic analysis indicated that the third-wave outbreaks in central Guangdong most likely resulted from local virus persistence rather than introduction from elsewhere. Although the number of clinical cases in humans declined by 35% from the second to the third waves, the genetic diversity of third-wave viruses in Guangdong increased. Our results highlight the epidemic risk to a region reporting comparatively few A(H7N9) cases. Moreover, our results suggest that live-poultry market interventions cannot completely halt A(H7N9) virus persistence and dissemination

    High-Power Distributed Feedback Laser Diodes Emitting at 820nm

    No full text
    By etching a second-order grating directly into the Al-free optical waveguide region of a ridgewaveguide(RW) AlGaInAs/AlGaAs distributed feedback(DFB) laser diode,a front facet output power of 30mW is obtained at about 820nm with a single longitudinal mode. The Al-free grating surface permits the re-growth of a high-quality cladding layer that yields excellent device performance. The threshold current of these laser diodes is 57mA,and the slope efficiency is about 0.32mW/mA
    corecore