32 research outputs found

    OP0291 TOFACITINIB FOR THE TREATMENT OF POLYARTICULAR COURSE JUVENILE IDIOPATHIC ARTHRITIS: RESULTS OF A PHASE 3, RANDOMISED, DOUBLE-BLIND, PLACEBO-CONTROLLED WITHDRAWAL STUDY

    Get PDF
    Background:Tofacitinib is an oral JAK inhibitor that is being investigated for JIA.Objectives:To assess tofacitinib efficacy and safety in JIA patients (pts).Methods:This was a Phase 3, randomised, double-blind (DB), placebo (PBO)-controlled withdrawal study in pts aged 2−<18 years with polyarticular course JIA (pcJIA), PsA or ERA (NCT02592434). In the 18-week open-label Part 1, pts received weight-based tofacitinib doses (5 mg BID or lower). Pts with ≥JIA ACR30 response at Week (W)18 were randomised 1:1 in the DB Part 2 (W18−44) to continue tofacitinib or switch to PBO. Primary endpoint: disease flare rate by W44. Key secondary endpoints: JIA ACR50/30/70 response rates; change from Part 2 baseline (Δ) in CHAQ-DI at W44. Other efficacy endpoints: time to disease flare in Part 2; JADAS27-CRP in Parts 1 and 2. PsA/ERA pts were excluded from these efficacy analyses. Safety was evaluated in all pts up to W44.Results:225 enrolled pts with pcJIA (n=184), PsA (n=20) or ERA (n=21) received tofacitinib in Part 1. At W18, 173/225 (76.9%) pts entered Part 2 (pcJIA n=142, PsA n=15, ERA n=16). In pcJIA pts, disease flare rate in Part 2 was significantly lower with tofacitinib vs PBO by W44 (p=0.0031; Fig 1a). JIA ACR50/30/70 response rates (Fig 1b) and ΔCHAQ-DI (Fig 1c) at W44, and time to disease flare in Part 2 (Fig 2a), were improved with tofacitinib vs PBO. Tofacitinib reduced JADAS27-CRP in Part 1; this effect was sustained in Part 2 (Fig 2b). Overall, safety was similar with tofacitinib or PBO (Table): 77.3% and 74.1% had adverse events (AEs); 1.1% and 2.4% had serious AEs. In Part 1, 2 pts had herpes zoster (non-serious) and 3 pts had serious infections (SIs). In Part 2, SIs occurred in 1 tofacitinib pt and 1 PBO pt. No pts died.Conclusion:In pcJIA pts, tofacitinib vs PBO resulted in significantly fewer disease flares, and improved time to flare, disease activity and physical functioning. Tofacitinib safety was consistent with that in RA pts.Table.Safety in all ptsPart 1Part 2TofacitinibaN=225TofacitinibaN=88PBO N=85Pts with events, n (%)AEs153 (68.0)68 (77.3)63 (74.1)SAEs7 (3.1)1 (1.1)2 (2.4)Permanent discontinuations due to AEs26 (11.6)16 (18.2)29 (34.1)AEs of special interest Death000 Gastrointestinal perforationb000 Hepatic eventb3 (1.3)00 Herpes zoster (non-serious and serious)2 (0.9)c00 Interstitial lung diseaseb000 Major adverse cardiovascular eventsb000 Malignancy (including non-melanoma skin cancer)b000 Macrophage activation syndromeb000 Opportunistic infectionb000 SI3 (1.3)1 (1.1)d1 (1.2) Thrombotic event (deep vein thrombosis, pulmonary embolismbor arterial thromboembolism)000 Tuberculosisb000a5 mg BID or equivalent weight-based lower dose in pts <40 kgbAdjudicated eventscBoth non-seriousdOne SAE of pilonidal cyst repair was coded to surgical procedures instead of infections, and was inadvertently not identified as an SI. Following adjudication, the SAE did not meet opportunistic infection criteria; it is also included in the table as an SIAE, adverse event; BID, twice daily; PBO, placebo; pts, patients; SAE, serious AE; SI, serious infectionAcknowledgments:Study sponsored by Pfizer Inc. Medical writing support was provided by Sarah Piggott of CMC Connect and funded by Pfizer Inc.Disclosure of Interests:Nicolino Ruperto Grant/research support from: Bristol-Myers Squibb, Eli Lily, F Hoffmann-La Roche, GlaxoSmithKline, Janssen, Novartis, Pfizer, Sobi (paid to institution), Consultant of: Ablynx, AbbVie, AstraZeneca-Medimmune, Biogen, Boehringer Ingelheim, Bristol-Myers Squibb, Eli Lily, EMD Serono, GlaxoSmithKline, Hoffmann-La Roche, Janssen, Merck, Novartis, Pfizer, R-Pharma, Sanofi, Servier, Sinergie, Sobi, Takeda, Speakers bureau: Ablynx, AbbVie, AstraZeneca-Medimmune, Biogen, Boehringer Ingelheim, Bristol-Myers Squibb, Eli Lily, EMD Serono, GlaxoSmithKline, Hoffmann-La Roche, Janssen, Merck, Novartis, Pfizer, R-Pharma, Sanofi, Servier, Sinergie, Sobi, Takeda, Olga Synoverska Speakers bureau: Sanofi, Tracy Ting: None declared, Carlos Abud-Mendoza Speakers bureau: Eli Lilly, Pfizer Inc, Alberto Spindler Speakers bureau: Eli Lilly, Yulia Vyzhga Grant/research support from: Pfizer Inc, Katherine Marzan Grant/research support from: Novartis, Vladimir Keltsev: None declared, Irit Tirosh: None declared, Lisa Imundo: None declared, Rita Jerath: None declared, Daniel Kingsbury: None declared, Betül Sözeri: None declared, Sheetal Vora: None declared, Sampath Prahalad Grant/research support from: Novartis, Elena Zholobova Grant/research support from: Novartis and Pfizer Inc, Speakers bureau: AbbVie, Novartis, Pfizer Inc and Roche, Yonatan Butbul Aviel: None declared, Vyacheslav Chasnyk: None declared, Melissa Lerman Grant/research support from: Amgen, Kabita Nanda Grant/research support from: Abbott, AbbVie, Amgen and Roche, Heinrike Schmeling Grant/research support from: Janssen, Pfizer Inc, Roche and USB Bioscience, Heather Tory: None declared, Yosef Uziel Speakers bureau: Pfizer Inc, Diego O Viola Grant/research support from: Bristol-Myers Squibb, GSK, Janssen and Pfizer Inc, Speakers bureau: AbbVie and Bristol-Myers Squibb, Holly Posner Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Keith Kanik Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Ann Wouters Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Cheng Chang Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Richard Zhang Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Irina Lazariciu Consultant of: Pfizer Inc, Employee of: IQVIA, Ming-Ann Hsu Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Ricardo Suehiro Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Alberto Martini Consultant of: AbbVie, Eli Lily, EMD Serono, Janssen, Novartis, Pfizer, UCB, Daniel J Lovell Consultant of: Abbott (consulting and PI), AbbVie (PI), Amgen (consultant and DSMC Chairperson), AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb (PI), Celgene, Forest Research (DSMB Chairman), GlaxoSmithKline, Hoffman-La Roche, Janssen (co-PI), Novartis (consultant and PI), Pfizer (consultant and PI), Roche (PI), Takeda, UBC (consultant and PI), Wyeth, Employee of: Cincinnati Children's Hospital Medical Center, Speakers bureau: Wyeth, Hermine Brunner Consultant of: Hoffman-La Roche, Novartis, Pfizer, Sanofi Aventis, Merck Serono, AbbVie, Amgen, Alter, AstraZeneca, Baxalta Biosimilars, Biogen Idec, Boehringer, Bristol-Myers Squibb, Celgene, EMD Serono, Janssen, MedImmune, Novartis, Pfizer, and UCB Biosciences, Speakers bureau: GSK, Roche, and Novarti

    Резолюция Совета экспертов от 20 мая 2023 г. «Вопросы безопасности лечения ревматологического пациента»

    Get PDF
    At the meeting of the Expert Council on May 20, the safety of treatment for patients with osteoarthritis (OA), the most common form of joint disease, was discussed. The first step in the treatment of OA should be the administration of symptomatic delayed-acting agents (SYSADOA) and nonsteroidal anti-inflammatory drugs (NSAIDs). However, given the current understanding of the pathogenesis of inflammation, as well as the fact that it is an active process involving multiple proinflammatory and pro-resolving mediators, it is reasonable to limit the cyclooxygenase-2 suppressive treatment and to include medications with multipurpose effects that contribute to the resolution of inflammation, in particular Zeel® T and Traumeel® S. Traumeel® S affects all stages of inflammation, mostly on the pro-resolving mediators synthesis, and Zeel® T affects chondrogenesis, inflammation, metabolic processes in cartilage tissue and prevents angiogenesis.It was found that it is advisable to use Traumeel® S when it is not possible to prescribe systemic NSAIDs for pain relief. The combination of the proven therapeutic efficacy of Zeel® T and Traumeel® S with a minimal number of adverse events and the absence of interactions with other drugs allows them to be used as an independent treatment regimen for OA.На заседании Совета экспертов 20 мая 2023 г. были рассмотрены вопросы безопасности лечения пациентов с остеоартритом (ОА) — самой распространенной формой заболеваний суставов. Первым шагом терапии ОА должно быть назначение симптоматических средств замедленного действия (SYSADOA) и нестероидных противовоспалительных препаратов (НПВП). Однако, учитывая современные представления о патогенезе воспаления, а также то, что это активный процесс с участием большого числа провоспалительных и проразрешающих медиаторов, представляется актуальной тактика ограничения терапии с подавлением циклооксигеназы 2 и включения в схемы лечения лекарственных средств с многоцелевым действием, способствующих разрешению воспаления, в частности препаратов Цель® Т и Траумель® С. Траумель® С оказывает воздействие на все этапы воспаления, в большей степени на синтез проразрешающих медиаторов, а Цель® Т влияет на хондрогенез, воспаление, метаболические процессы в хрящевой ткани и предотвращает ангиогенез.Отмечено, что при невозможности назначения системных НПВП для купирования боли целесообразно применение препарата Траумель® С. Сочетание доказанной терапевтической эффективности препаратов Цель® Т и Траумель® С с минимальным числом нежелательных явлений и отсутствием взаимодействий с другими лекарственными средствами позволяет использовать их как самостоятельную схему терапии при ОА

    Immunoglobulin, glucocorticoid, or combination therapy for multisystem inflammatory syndrome in children: a propensity-weighted cohort study

    Get PDF
    Background: Multisystem inflammatory syndrome in children (MIS-C), a hyperinflammatory condition associated with SARS-CoV-2 infection, has emerged as a serious illness in children worldwide. Immunoglobulin or glucocorticoids, or both, are currently recommended treatments. Methods: The Best Available Treatment Study evaluated immunomodulatory treatments for MIS-C in an international observational cohort. Analysis of the first 614 patients was previously reported. In this propensity-weighted cohort study, clinical and outcome data from children with suspected or proven MIS-C were collected onto a web-based Research Electronic Data Capture database. After excluding neonates and incomplete or duplicate records, inverse probability weighting was used to compare primary treatments with intravenous immunoglobulin, intravenous immunoglobulin plus glucocorticoids, or glucocorticoids alone, using intravenous immunoglobulin as the reference treatment. Primary outcomes were a composite of inotropic or ventilator support from the second day after treatment initiation, or death, and time to improvement on an ordinal clinical severity scale. Secondary outcomes included treatment escalation, clinical deterioration, fever, and coronary artery aneurysm occurrence and resolution. This study is registered with the ISRCTN registry, ISRCTN69546370. Findings: We enrolled 2101 children (aged 0 months to 19 years) with clinically diagnosed MIS-C from 39 countries between June 14, 2020, and April 25, 2022, and, following exclusions, 2009 patients were included for analysis (median age 8·0 years [IQR 4·2–11·4], 1191 [59·3%] male and 818 [40·7%] female, and 825 [41·1%] White). 680 (33·8%) patients received primary treatment with intravenous immunoglobulin, 698 (34·7%) with intravenous immunoglobulin plus glucocorticoids, 487 (24·2%) with glucocorticoids alone; 59 (2·9%) patients received other combinations, including biologicals, and 85 (4·2%) patients received no immunomodulators. There were no significant differences between treatments for primary outcomes for the 1586 patients with complete baseline and outcome data that were considered for primary analysis. Adjusted odds ratios for ventilation, inotropic support, or death were 1·09 (95% CI 0·75–1·58; corrected p value=1·00) for intravenous immunoglobulin plus glucocorticoids and 0·93 (0·58–1·47; corrected p value=1·00) for glucocorticoids alone, versus intravenous immunoglobulin alone. Adjusted average hazard ratios for time to improvement were 1·04 (95% CI 0·91–1·20; corrected p value=1·00) for intravenous immunoglobulin plus glucocorticoids, and 0·84 (0·70–1·00; corrected p value=0·22) for glucocorticoids alone, versus intravenous immunoglobulin alone. Treatment escalation was less frequent for intravenous immunoglobulin plus glucocorticoids (OR 0·15 [95% CI 0·11–0·20]; p<0·0001) and glucocorticoids alone (0·68 [0·50–0·93]; p=0·014) versus intravenous immunoglobulin alone. Persistent fever (from day 2 onward) was less common with intravenous immunoglobulin plus glucocorticoids compared with either intravenous immunoglobulin alone (OR 0·50 [95% CI 0·38–0·67]; p<0·0001) or glucocorticoids alone (0·63 [0·45–0·88]; p=0·0058). Coronary artery aneurysm occurrence and resolution did not differ significantly between treatment groups. Interpretation: Recovery rates, including occurrence and resolution of coronary artery aneurysms, were similar for primary treatment with intravenous immunoglobulin when compared to glucocorticoids or intravenous immunoglobulin plus glucocorticoids. Initial treatment with glucocorticoids appears to be a safe alternative to immunoglobulin or combined therapy, and might be advantageous in view of the cost and limited availability of intravenous immunoglobulin in many countries. Funding: Imperial College London, the European Union's Horizon 2020, Wellcome Trust, the Medical Research Foundation, UK National Institute for Health and Care Research, and National Institutes of Health

    Immunoglobulin, glucocorticoid, or combination therapy for multisystem inflammatory syndrome in children: a propensity-weighted cohort study

    Get PDF
    Background Multisystem inflammatory syndrome in children (MIS-C), a hyperinflammatory condition associated with SARS-CoV-2 infection, has emerged as a serious illness in children worldwide. Immunoglobulin or glucocorticoids, or both, are currently recommended treatments. Methods The Best Available Treatment Study evaluated immunomodulatory treatments for MIS-C in an international observational cohort. Analysis of the first 614 patients was previously reported. In this propensity-weighted cohort study, clinical and outcome data from children with suspected or proven MIS-C were collected onto a web-based Research Electronic Data Capture database. After excluding neonates and incomplete or duplicate records, inverse probability weighting was used to compare primary treatments with intravenous immunoglobulin, intravenous immunoglobulin plus glucocorticoids, or glucocorticoids alone, using intravenous immunoglobulin as the reference treatment. Primary outcomes were a composite of inotropic or ventilator support from the second day after treatment initiation, or death, and time to improvement on an ordinal clinical severity scale. Secondary outcomes included treatment escalation, clinical deterioration, fever, and coronary artery aneurysm occurrence and resolution. This study is registered with the ISRCTN registry, ISRCTN69546370. Findings We enrolled 2101 children (aged 0 months to 19 years) with clinically diagnosed MIS-C from 39 countries between June 14, 2020, and April 25, 2022, and, following exclusions, 2009 patients were included for analysis (median age 8·0 years [IQR 4·2–11·4], 1191 [59·3%] male and 818 [40·7%] female, and 825 [41·1%] White). 680 (33·8%) patients received primary treatment with intravenous immunoglobulin, 698 (34·7%) with intravenous immunoglobulin plus glucocorticoids, 487 (24·2%) with glucocorticoids alone; 59 (2·9%) patients received other combinations, including biologicals, and 85 (4·2%) patients received no immunomodulators. There were no significant differences between treatments for primary outcomes for the 1586 patients with complete baseline and outcome data that were considered for primary analysis. Adjusted odds ratios for ventilation, inotropic support, or death were 1·09 (95% CI 0·75–1·58; corrected p value=1·00) for intravenous immunoglobulin plus glucocorticoids and 0·93 (0·58–1·47; corrected p value=1·00) for glucocorticoids alone, versus intravenous immunoglobulin alone. Adjusted average hazard ratios for time to improvement were 1·04 (95% CI 0·91–1·20; corrected p value=1·00) for intravenous immunoglobulin plus glucocorticoids, and 0·84 (0·70–1·00; corrected p value=0·22) for glucocorticoids alone, versus intravenous immunoglobulin alone. Treatment escalation was less frequent for intravenous immunoglobulin plus glucocorticoids (OR 0·15 [95% CI 0·11–0·20]; p<0·0001) and glucocorticoids alone (0·68 [0·50–0·93]; p=0·014) versus intravenous immunoglobulin alone. Persistent fever (from day 2 onward) was less common with intravenous immunoglobulin plus glucocorticoids compared with either intravenous immunoglobulin alone (OR 0·50 [95% CI 0·38–0·67]; p<0·0001) or glucocorticoids alone (0·63 [0·45–0·88]; p=0·0058). Coronary artery aneurysm occurrence and resolution did not differ significantly between treatment groups. Interpretation Recovery rates, including occurrence and resolution of coronary artery aneurysms, were similar for primary treatment with intravenous immunoglobulin when compared to glucocorticoids or intravenous immunoglobulin plus glucocorticoids. Initial treatment with glucocorticoids appears to be a safe alternative to immunoglobulin or combined therapy, and might be advantageous in view of the cost and limited availability of intravenous immunoglobulin in many countries. Funding Imperial College London, the European Union's Horizon 2020, Wellcome Trust, the Medical Research Foundation, UK National Institute for Health and Care Research, and National Institutes of Health

    Proceedings of the 24th Paediatric Rheumatology European Society Congress: Part three

    Get PDF
    From Springer Nature via Jisc Publications Router.Publication status: PublishedHistory: collection 2017-09, epub 2017-09-0

    >

    No full text

    Low-temperature tempering of large welded vessels

    No full text
    corecore