1,622 research outputs found

    Spiking Neural P Systems with Addition/Subtraction Computing on Synapses

    Get PDF
    Spiking neural P systems (SN P systems, for short) are a class of distributed and parallel computing models inspired from biological spiking neurons. In this paper, we introduce a variant called SN P systems with addition/subtraction computing on synapses (CSSN P systems). CSSN P systems are inspired and motivated by the shunting inhibition of biological synapses, while incorporating ideas from dynamic graphs and networks. We consider addition and subtraction operations on synapses, and prove that CSSN P systems are computationally universal as number generators, under a normal form (i.e. a simplifying set of restrictions)

    Iterative Object and Part Transfer for Fine-Grained Recognition

    Full text link
    The aim of fine-grained recognition is to identify sub-ordinate categories in images like different species of birds. Existing works have confirmed that, in order to capture the subtle differences across the categories, automatic localization of objects and parts is critical. Most approaches for object and part localization relied on the bottom-up pipeline, where thousands of region proposals are generated and then filtered by pre-trained object/part models. This is computationally expensive and not scalable once the number of objects/parts becomes large. In this paper, we propose a nonparametric data-driven method for object and part localization. Given an unlabeled test image, our approach transfers annotations from a few similar images retrieved in the training set. In particular, we propose an iterative transfer strategy that gradually refine the predicted bounding boxes. Based on the located objects and parts, deep convolutional features are extracted for recognition. We evaluate our approach on the widely-used CUB200-2011 dataset and a new and large dataset called Birdsnap. On both datasets, we achieve better results than many state-of-the-art approaches, including a few using oracle (manually annotated) bounding boxes in the test images.Comment: To appear in ICME 2017 as an oral pape

    On the Robustness of Post-hoc GNN Explainers to Label Noise

    Full text link
    Proposed as a solution to the inherent black-box limitations of graph neural networks (GNNs), post-hoc GNN explainers aim to provide precise and insightful explanations of the behaviours exhibited by trained GNNs. Despite their recent notable advancements in academic and industrial contexts, the robustness of post-hoc GNN explainers remains unexplored when confronted with label noise. To bridge this gap, we conduct a systematic empirical investigation to evaluate the efficacy of diverse post-hoc GNN explainers under varying degrees of label noise. Our results reveal several key insights: Firstly, post-hoc GNN explainers are susceptible to label perturbations. Secondly, even minor levels of label noise, inconsequential to GNN performance, harm the quality of generated explanations substantially. Lastly, we engage in a discourse regarding the progressive recovery of explanation effectiveness with escalating noise levels

    Field Experimental Study on Corrosion Mechanism of Well Lai 14-9

    Get PDF
    Casing corrosion is serious and the injection efficiency is considerably low due to high injecting water corrosion in Well Lai 14-9. Casing corrosion mechanism is retrieved through SEM observation, energy spectrum analysis, XRD analysis spectrum, TGA analysis of corrosion fouling. The results show casing corrosion mechanism varies with depths; casing corrosion is the result of the combined action of carbon dioxide, dissolved oxygen, sulfate-reducing bacteria and high salinity. To extend the life of casing, appropriate casing protection measures should be adopted, which can reduces the cost of production of the oilfield.Key words: Corrosion mechanism; Fouling; SEM observation; XRD analysis spectrum; TGA analysi
    • …
    corecore