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Summary. Spiking neural P systems (SN P systems, for short) are a class of distributed
and parallel computing models inspired from biological spiking neurons. In this paper,
we introduce a variant called SN P systems with addition/subtraction computing on
synapses (CSSN P systems). CSSN P systems are inspired and motivated by the shunting
inhibition of biological synapses, while incorporating ideas from dynamic graphs and
networks. We consider addition and subtraction operations on synapses, and prove that
CSSN P systems are computationally universal as number generators, under a normal
form (i.e. a simplifying set of restrictions).
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1 Introduction

Brain is a rich source of inspiration for informatics. Specifically, it has provided
plenty of ideas to construct high performance computing models, as well as to
design efficient algorithm. Inspired from the biological phenomenon that neurons
cooperate in the brain by exchanging spikes via synapses, various neural-like com-
puting models have been proposed. In the framework of membrane computing,
a kind of distributed and parallel neural-like computing model were proposed in
2006 [1], which is called spiking neural P systems (SN P systems for short).

SN P systems have neurons that process only one type of symbols, the spike,
based on the indistinct signal used by biological neurons. Neurons are placed on
nodes of a directed graph, and the edges between neurons are called synapses, again
based on synapses of biological neurons. SN P systems processes spikes by applying
rules, and two of the most common types are firing rules and forgetting rules: the
former rules produce one or more spike, which is/are sent from the source neuron
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to every neuron connected by a synpase, while the latter rules remove spikes from
the neuron.

Since the human brain and biological neurons are rich sources of computing
ideas, many variants of SN P systems have been introduced, taking inspiration from
biological phenomena, e.g. synapse weight, neuron division, astrocytes, inhibitory
synapses, as in [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Investigation on
the theoretical and practical usefulness have also been applied to these variants:
their computing power in relation to well-known models of computation, e.g. finite
automata, register machines, grammars, computing numbers or strings as in [17,
18, 19, 20, 21, 22, 23, 24, 25, 26]; computing efficiency in solving hard problems,
as in [27, 28].

Moreover, practical applications and software for simulations have been devel-
oped for SN P systems and their variants: to design logic gates, logic circuits [29]
and databases [30], to perform basic arithmetic operations [31][32], to represent
knowledge [33], to diagnose fault [34, 35, 36], to approximately solve combinatorial
optimization problems [37].

In this work, we introduce a variant of SN P systems which we refer to as SN
P systems with addition/subtraction computing on synapses (CSSN P systems,
for short). CSSN P systems take inspirations and motivations from biological,
mathematical and computing sources.

Biologically, it is known that not only neurons but also synapses can process
spikes, as in [38]. Synapses monitor the spikes go through it and change the value
of spikes according to their excitatory or inhibitory. Hence, it is natural to consider
addition/subtraction computing of two consecutive spikes on synapses.

The mathematical and computing inspirations are taken from the study of
dynamic graphs. Since SN P systems are in essence static graphs, it is natural to
consider them for dynamic graphs as well.

In the survey of dynamic graphs, two main kinds of structural evolutions of the
graphs are identified: node-centric evolutions, i.e. nodes or vertices are the focus,
and edge-centric evolutions, i.e. edges are the focus. In the framework of SN P
systems, several works have focused on dynamism for the neuron, as in [28][13].
More recently, SN P systems with structural plasticity were introduced in [39],
with subsequent works in [40, 41, 42]. In these systems, synapses can be created or
removed by plasticity rules of neurons, hence, structural evolution of the systems
are more edge-centric.

For CSSN P systems however, we further focus on synapse dynamism, but this
time we add an addition or subtraction computing to each synapse in the system.
Specifically, for two consecutive spikes get through the synapse, if excitatory spike
come first, the synapse does addition, otherwise, subtraction. Furthermore, we
show that CSSN P systems are computationally universal, under a normal form
(m. ore details below), for generating numbers

This work is organized as follows: Section 2 provides the definition of CSSN
P systems and their semantics; Section 3 provides an example of CSSN P sys-
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tems; Section 4 provides universality result on CSSN P systems; At last, Section
5 concludes this work and provides further directions for research.

2 Spiking Neural P Systems with Computing on Synapses

In this section we define our proposed variant, and provides the semantics. A
spiking neural P system with computing on synapses, CSSN P system for short,
of degree m ≥ 1 is a construct of the form

Π = (O, σ1, σ2, . . . , σm, syn, in, out),

where:

1. O = {a} is a singleton alphabet, and a is called spike;
2. σ1, σ2, . . . , σm are neurons of the form σi = (ni, Ri), 1 ≤ i ≤ m; ni ≥ 0 is the

initial number of spikes contained in the neuron σi; Ri is a finite set of rules
of the following two forms:

(a) Firing rule: E/ac → ap; d, where E is a a regular expression over {a},
c ≥ 1, d ≥ 0, with the restriction c ≥ p. Specifically, when d = 0, it can be
omitted;

(b) Forgetting rule: as → λ, for some s ≥ 1, with the restriction that for each
rule E/ac → ap; d of type (1) from Ri, we have as /∈ L(E);

3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} is the set of synapses between neurons,
with restriction (i, i) /∈ syn for 1 ≤ i ≤ m, which means no σi has a synapse
to itself;

4. in, out ∈ {1, 2, . . . ,m} indicate the input and output neuron, respectively.

The in or out elements in the construction can be omitted, depending on
whether they exist in the system or not. For a given neuron σi (also called neuron
i or simply σi), we illustrate σi as an oval, and synapses between neurons as
arcs. The input neuron has a synapse or arc from the environment, i.e. everything
outside or not part of the system, while the output neuron has a synapse to the
environment.

The firing rule of the form E/ac → ap; d with c ≥ p ≥ 1 is called an extended
rule; if p = 1, the rule is called a standard rule. As a convention, if L(E) = {ac},
the rule can be simply written as ac → ap; d. Specifically, if d = 0, it can be
omitted and the rule can be simply written as ac → ap.

The semantics of applying firing rules are as follows: if the neuron σi contains
k spikes, ak ∈ L(E) and k ≥ c, then the firing rule E/ac → ap; d ∈ Ri can be
applied, i.e., the number of spikes k in σi satisfies the requirement for applying
the rule. Applying such a rule means consuming c spikes from σi and producing p
spikes after d time units, thus k−c spikes remains in σi. If d = 0, then the produced
spikes are released immediately, and if d = 1, then the spikes are emitted in the
next step, and so on. In the case d ≥ 1, if the rule is applied at step t, neuron
σi becomes closed in the interval [t, t+ d), i.e., it cannot receive spikes and spikes
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sent to it while it is closed are lost. At step t+ d, neuron σi becomes open, i.e., it
can receive spikes again, and at the same time it sends p spikes to come across all
the synapses such that (i, j) ∈ syn.

The semantics of applying forgetting rules is as follows: if the neuron contains
exactly s spikes, then the forgetting rule as → λ can be used, and this means that
all s spikes are removed from the neuron.

The semantics of computing synapse is as follows: each synapse from syn mon-
itors the flow of spikes come across it, and do the computation according to the
dynamic status of these spikes. Specifically, synapses will do addition, subtraction
or nothing according to the comparison result of two consecutive flows of spikes,
and the spikes sent to the receiving neuron (neuron σj such that (i, j) ∈ syn) will
be the results of these computation.

For each synapse (i, j) ∈ syn, there are several flows of spikes comes across the
synapse during the computation of the system, i.e. there is a spike train on the
synapse. In this case, synapse will compare the number of spikes come across it
consecutively, and get excitatory, inhibitory, or normal accordingly. We say that
two flows of spikes ap and aq come across the synapse consecutively, i.e. spikes ap

at step t and spikes aq at step t + 1, then there are three kinds of relationship
between ap and aq.

case 1: p < q, the synapse gets excited and do addition, and the receiving neuron
σj will get spikes ap+q;

case 2: p = q, the synapse gets normal and do nothing, and the receiving neuron
σj will get spikes ap;

case 3: p > q, the synapse gets inhibited and do subtraction, and the receiving
neuron σj will get spikes ap−q.

Specially, it is possible that during the computation of the system, there is only
one flow of spikes comes across the synapse, for instance, spikes as come across
the synapse in one step. In this case, there is no comparison and the synapse does
not compute, and the receiving neuron σj will get spikes as.

A configuration of the system at a given step is the contribution of spikes
among neurons, and the status of each neuron, whether closed or open. The ini-
tial configuration is given by ni of each neuron σi. The system reaches a halting
configuration when there is no rule can be applied and all neurons are open. A
computation is defined as a sequence of configuration transitions, from an initial
configuration, and following rule application semantics and synapse computing
semantics. A computation halts if the system reaches a halting configuration.

The result of the computation can be defined in various ways in SN P systems.
In this work we use the following definition: when a computation halts, the number
of spikes present in the output neuron is said to be computed by an CSSN P system
Π. We denote the set of all number computed in this way by Π as Ngen(Π). In
Ngen(Π) we have Π able to generate numbers (we also say that Π works in the
generative mode).
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CSSN P systems can also accept numbers i.e. Π works in the acceptive mode.
When working in the acceptive mode, the output neuron is ignored, and Π work
as follows: a number is introduced into Π as the number of spikes present in the
input neuron in the initial configuration, and the number is accepted by Π if
the computation halts. The set of numbers accepted this way by Π is denoted as
Nacc(Π).

The families of all sets of Nα(Π), with α ∈ {gen, acc} are denoted as
NαSNPCOSm(rulek, consr, forgq), with at most m ≥ 1 neurons in the system,
at most k ≥ 1 rules in each neuron, consuming at most r ≥ 1 spikes in any firing
rule of any neuron, and forgetting at most q ≥ 1 spikes in any forgetting rule
of any neuron. We note that the parameter for the delay for the firing rules are
specified in other literature, e.g. in [], but here we do not use it so the parameter
is omitted.

3 An Example

In this section we provide an example Π1 to further clarify the semantics of CSSN
P systems, which is shown in Fig. 1.

The system Π1 is composed of two neurons, labeled with 1 and 2, and they are
the input and output neuron, respectively. Formally, system Π1 is a structure of
the form Π = (O, σ1, σ2, syn, 1, 2), where:

• O = {a};
• σ1 = (5, R1), with R1 = {a5 → a4, a5/a2 → a2, a5/a3 → a3, a3 → a3, a3 →

a2, a2 → a2};
• σ2 = (0, R2), with R2 = ∅;
• syn = {(1, 2)}.

a5

a5 → a4

a5/a2 → a2

a5/a3 → a3

a3 → a3

a3 → a2

a2 → a2

1

2/out

Fig. 1. A simple example of an SN P system with computing synapse

Neuron σ1 fires at the first step of the computation. As shown in the table
below, there are four sets of rules to apply. Also, the flow of spikes on synapse
(1, 2), computing on synapse, and spikes received by σ2 are present in detail.
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rules to apply flow of spikes computing on synapse spikes received
on synapse by σ2

a5 → a4 a4 none a4

a5/a2 → a2, a3 → a3 a2a3 addition a5

a5/a2 → a2, a3 → a2 a2a2 none a2

a5/a3 → a3, a2 → a2 a3a2 subtraction a

From the table we can see that: when working in the generative mode, the set
of all number computed by Π is {1, 2, 4, 5}, i.e. Πgen = {1, 2, 4, 5}.

4 Universality Results

In this section, we present universality results for SN P systems with computing
on synapses, for the generating modes.

Theorem 1. NgenSNPCOS∗(rule3, cons5, forg5) = NRE.

Proof. In order to prove Theorem, it is enough to simulate a register machine M
with an CSSN P system Π with restrictions in the Theorem statement. Before
constructing Π, we provide a general overview of the computation as follows:
each register r in M corresponds to a σr in Π. If r stores the number n, then
σr stores 2n spikes. If M applies an instruction li that performs some operation
OP ∈ {ADD,SUB,HALT}, this means that a corresponding neuron σli becomes
activated in order to simulate OP . Without loss of generality, register 1 of M is
the output register and this register is never subjected to a SUB instruction. In
this way, the spikes in σ1 are never decremented.

In what follows, we provide the modules in most cases in a graphical manner
for easier reference. The initial configuration of Π is such that all neurons are
empty, except for σl0 which contains three spikes. The three spikes in σl0 begins
the computation of Π, corresponding to simulating the initial instruction l0 of M .

Module ADD : The module simulating li : (ADD(r), lj , lk) is given in Fig. 2.
Once σli is activated, both neurons li1 and li2 receive three spikes.
With three spikes inside, neuron li2 applies the rule a3/a2 → a2 first, and then

the rule a → λ. As a result, the spike trains on synapses (li2 , r) and (li2 , li4) are
a2λ, and the computing on these synapses is subtraction. In this way, σr receive
two spikes, corresponding to incrementing the register r by one, and σli4

also gets
two spikes.

With three spikes inside, neuron li1 applies the rule a3/a → a first, and then
it must nondeterministically choose to apply either a2 → a2 or a2 → λ. If the
former rule is chosen, then the spike trains on synapses (li1 , li3) and (li1 , li4) are
aa2, and the synapses does addition. In this way, σli3

receives three spikes, gets
activated, and sends three spikes to σlj , which makes neuron lj activated; σli4
receives five spikes (three from synapse (li1 , li4) and two from synapse (li2 , li4)),
which are forgotten according to the rule a5 → λ. If the latter rule is applied,
then the spike trains on synapses (li1 , li3) and (li1 , li4) are aλ, and the synapses
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a3 → a3

li

a3/a → a

a2 → a2

a2 → λ

li1

a3/a2 → a2

a → λ

li2

a3 → a3

a → λ

li3

a5 → λ
a3 → a3

li4

r

lj lk

Fig. 2. Module ADD

does subtraction. In this way, σli3
receives one spikes, which is forgotten according

to the rule a → λ; σli4
receives three spikes (one from synapse (li1 , li4) and two

from synapse (li2 , li4)), gets activated, and sends three spikes to σlk , which makes
neuron lk activated.

The functioning of the ADD module correctly simulates li : (ADD(r), lj , lk)
by incrementing σr with two spikes, followed by nondeterministically activating
either σlj or σlk .

Module SUB : The module for simulating li : (SUB(r), lj , lk) is given in Fig. 3.
In the instruction li of M , we have two case, depending if r stores an empty or
nonempty value.

Once σli is activated, both neurons r and li1 receive three spikes.
With three spikes inside, neuron li1 applies the rule a3/a → a first, and then

the rule a2 → a2. As a result, the spike trains on synapses (li1 , li3) and (li1 , li4)
are aa2, and the computing on these synapses is addition. In this way, both σli3
and σli4

receive three spikes.
Now, let’s take a look at neuron σr.
On one hand, if register r stores a nonempty value n ≥ 1, this means that

initially there are at least two spikes in σr. After receiving three spikes from σli ,
σr contains at least five spikes (in general it contains 2n+ 3, n ≥ 1 spikes). Only
the rule a5(a2)∗/a5 → a2 can be applied by σr. Five spikes are removed from σr

(hence, only 2(n−1) spikes remain in σr) and two spikes is produced. The removal
of five spikes corresponds to decrementing register r by one. Through the neuron
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a3 → a3
li

a3(aa)+/a5 → a2

a3 → λ

r

a3/a → a

a2 → a2

li1

a2 → a2

li2

a5 → a3

a3 → λ
a2 → λ

li3

a5 → λ
a3 → a3

a2 → λ

li4

lj lk

Fig. 3. Module SUB

li2 , the two spikes arrives at σli3
and σli4

. Together with the three spikes from

σli1
, there are both five spikes in σli3

and σli4
. The rule a5 → a3 is applied by σli3

,

and the rule a5 → λ is applied by σli4
. In this way, three spikes arrives at σlj , but

not σlk . At this point, σlj becomes activated.
On the other hand, if register r stores an empty value, this means that initially

there is no spike in σr. When the three spikes from σli are available in σr, only the
rule a3 → λ can be applied. The three spikes are removed (hence, no spike remains
in σr) and no spike is produced. As a result, there are both three spikes in σli3

and σli4
. The rule a3 → λ is applied by σli3

, and the rule a3 → a3 is applied by
σli4

. In this way, three spikes arrives at σlk , but not σlj . At this point, σlk becomes
activated.

We also need to check if there is interference among several SUB modules
operating on the same σr, i.e. when more than one SUB instruction operates on
register r. However, due to the forgetting rule a2 → λ in neurons li3 and li4 , there
is no problem or interference. As shown in Fig. 3, each neuron r sends two spikes
to all neurons with label li2 , then to all neurons with label li3 and li4 in the SUB
module, but all these neurons will forget the two spikes immediately, except for the
neurons σli3

and σli4
from the module of the SUB instruction whose simulation
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proceeds correctly and which also receives three spikes from the corresponding
neuron li1 .

The functioning of the SUB module correctly simulates the li : (SUB(r), lj , lk)
operation by either decrementing σr and activating σlj , otherwise by activating
σlk . What remains now is to output the result of the computation.

Module OUTPUT : The module for halting the computation and producing the
output is given in Fig. 4. Since the output register 1 is never decremented, this
means that no SUB module operates on σ1, and the number of spikes in σ1 is
always of the form 2n. Once neuron lh becomes activated, it produces a single
spike so that σ1 becomes activated at the next step.

a3 → a

lh
a(aa)+/a2 → a

a → λ

1 out

Fig. 4. Module OUTPUT

If register 1 is nonempty, rule a(aa)+/a2 → a in σ1 is applied since σ1 now
has 2n + 1 spikes. This rule consumes two spikes, and one spike is sent to σout.
The rule will continue to be applied and consume two spikes each step, stopping
only when σ1 has exactly one spike, which is removed by the rule a → λ. In this
way, the spike train on synapse (1, out) is of the form aa . . . aλ, which begins with
n number of spikes and is ended with λ, i.e. n − 1 pairs of consecutive aa, and
then one pair of aλ. For the n− 1 pairs of consecutive aa, synapse (1, out) will do
nothing, so σout receives one spike for each computing on synapse, i.e. n−1 spikes
together. For the last pair of aλ, synapse will do subtraction, so σout receives one
spike. Hence, the spikes stored in σout is the generated number, i.e. (n−1)+1 = n,
which is exactly the number stored in output register 1 of M .

We note that all modules make use of at most three rules in each neuron, with
any rule consuming at most five spikes, and forgetting at most five spike. Hence,
the parameters of the Theorem are satisfied, and this completes the proof.

5 Final Remarks

In this work, we introduced spiking neural P systems with computing synapses (in
short, CSSN P systems). Such systems incorporate not only biological inspiration,
e.g. the shunting inhibition, but also computational and mathematical inspirations,
e.g. dynamic graphs or time-varying networks.

Our result in this work show that CSSN P systems are computationally uni-
versal, even with a normal form. The normal form, as given by parameters in the
theorem, includes: at most three rules in each neuron, with any rule consuming
at most five spikes, and forgetting at most five spike, and all these rules have no
delay.
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We suspect that the result provided in this work could still be improved, i.e.
improve the normal form. It is likely we can reduce cons5 to cons4 and forg5 to
forg4. How to reduce these and other parameters in the system, using CSSN P
semantics, remains open.

Another open problem is to consider more complicated synapse, e.g. synapse
computes by multiplication or division. It is also worth considering computing
synapses for SN P systems with anti-spikes.
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