90 research outputs found
Antidiabetic effect of Tibetan medicine Tang-Kang-Fu-San on high-fat diet and streptozotocin-induced type 2 diabetic rats
The aim of this study was to investigate the antidiabetic effects of a Tibetan medicine, Tang-Kang-Fu-San (TKFS), on experimental type 2 diabetes mellitus (T2DM) rats and to explore its underlying mechanisms. Firstly two major chemical compositions of TKFS, gallic acid and curcumin, were characterized by HPLC fingerprint analysis. Next T2DM in rats was induced by high-fat diet and a low-dose streptozotocin (STZ 35 mg/kg). Then oral gavage administration of three different doses of TKFS (0.3 g/kg, 0.6 g/kg, and 1.2 g/kg) was given to T2DM rats. Experimental results showed that TKFS dramatically reduced the levels of fasting blood glucose, fasting blood insulin, triglyceride, total cholesterol, LDL cholesterol, and HDL cholesterol, even though it did not alter the animal body weight. The downregulation of phosphorylation-AKT (p-AKT) and glucose transporter-4 (GLUT4) in skeletal muscle of T2DM rats was restored and abnormal pathological changes in pancreas tissues were also improved. Our work showed that TKFS could alleviate diabetic syndromes, maintain the glucose homeostasis, and protect against insulin resistance in T2DM rats, and the improvement of AKT phosphorylation and GLUT4 translocation in skeletal muscle would be one of its possible underlying mechanisms
Allogenic Natural Killer Cell Immunotherapy Combined with Irreversible Electroporation for Stage IV Hepatocellular Carcinoma: Survival Outcome
Background/Aims: We evaluated the clinical effectiveness of irreversible electroporation (IRE) in combination with immunotherapy using allogenic natural killer cells (NK) for stage IV hepatocellular carcinoma (HCC). Methods: The study involved 40 patients with stage IV HCC who were divided equally into two groups: 1) simple IRE; and 2) IRE plus allogenic NK cells (IRE-NK); we mainly assessed the overall survival (OS). Results: The effect of the IRE-NK treatment was synergistic, i.e., not only did it enhance immune function, it also decreased alpha-fetoprotein expression and showed significantly good clinical effectiveness. At the median 7.6-month follow-up (range, 3.8–12.1 months), median OS was higher in the IRE-NK group (10.1 months) than in the IRE group (8.9 months, P = 0.0078). Conclusion: IRE combined with allogeneic NK cell immunotherapy significantly increases the median OS of patients with stage IV HCC
Rif1 Maintains Telomere Length Homeostasis of ESCs by Mediating Heterochromatin Silencing
SummaryTelomere length homeostasis is essential for genomic stability and unlimited self-renewal of embryonic stem cells (ESCs). We show that telomere-associated protein Rif1 is required to maintain telomere length homeostasis by negatively regulating Zscan4 expression, a critical factor for telomere elongation by recombination. Depletion of Rif1 results in terminal hyperrecombination, telomere length heterogeneity, and chromosomal fusions. Reduction of Zscan4 by shRNA significantly rescues telomere recombination defects of Rif1-depleted ESCs and associated embryonic lethality. Further, Rif1 negatively modulates Zscan4 expression by maintaining H3K9me3 levels at subtelomeric regions. Mechanistically, Rif1 interacts and stabilizes H3K9 methylation complex. Thus, Rif1 regulates telomere length homeostasis of ESCs by mediating heterochromatic silencing
Experimental Study on the Road Performance of Phosphogypsum-Modified Lime-Fly Ash Stabilized Red Clay
To assess the impact of solid waste phosphogypsum on the road performance of lime-fly ash-stabilized red clay, we conducted comprehensive tests on the road performance, swelling and shrinkage characteristics, and mechanical properties of lime-fly ash soil with varying phosphogypsum content and curing age. Additionally, we analyzed the microstructure and composition changes using scanning electron microscopy and X-ray diffraction tests. The results revealed that phosphogypsum significantly enhances the early strength and moisture stability of lime-fly ash soil. The mechanical properties of lime-fly ash soil continue to improve with increased curing age, with performance improvements tapering off after 60 days and eventually stabilizing. Moreover, as the phosphogypsum content increases, the unconfined compressive strength (UCS), splitting strength, and CBR value of the lime-fly ash soil initially increase and then decrease. The optimal mixing ratio was determined to be 4% phosphogypsum, resulting in a 7-day UCS increase of 67.2%, a 28-day UCS increase of 3 times, and a 28-day splitting strength increase of 4.3 times. The moisture stability coefficient also exhibited a 43% increase after 7 days, and its anti-disintegration ability was enhanced, reaching 0.91 after 28 days, which meets the specified standards. Microscopic analysis revealed that the addition of phosphogypsum improved the overall integrity of the lime-fly ash soil, and the formation of ettringite effectively filled the soil’s pores. However, excessive ettringite caused increased expansion and deformation. To optimize the use of phosphogypsum-modified lime-fly ash-stabilized red clay as subgrade filler, it is advisable to incorporate additives to further reduce swelling deformation
The Accurate Method for Computing the Minimum Distance between a Point and an Elliptical Torus
We present an accurate method to compute the minimum distance between a point and an elliptical torus, which is called the orthogonal projection problem. The basic idea is to transform a geometric problem into finding the unique real solution of a quartic equation, which is fit for orthogonal projection of a point onto the elliptical torus. Firstly, we discuss the corresponding orthogonal projection of a point onto the elliptical torus for test points at six different spatial positions. Secondly, we discuss the same problem for test points on three special positions, e.g., points on the z-axis, the long axis and the minor axis, respectively
A Switchable Chaotic Oscillator with Multiscale Amplitude/Frequency Control
For the wide frequency spectrum of chaotic signals, it is difficult to realize chaotic signal conditioning. Therefore, researchers turn to the exploration of chaotic systems with independent non-bifurcation control for easy chaos modification. In this paper, a system with only one non-quadratic term is modified for providing multiscale amplitude/frequency control. By adjusting the feedback with an odd higher degree term, a switchable chaotic oscillator is obtained, which provides the different scales of amplitude/frequency control with the chaotic signal. Multisim-based circuit simulation shows the efficiency and convenience of chaotic signal control
Configurations and Control Strategies of Hybrid Powertrain Systems
The configuration and control strategy of hybrid powertrain systems are significant for the development of hybrid electric vehicles (HEV) because they significantly affect their comprehensive performance. In this paper, the types, features, and applications of the mainstream hybrid powertrain configurations on the market in recent years are summarized and the effects of different configurations on the comprehensive performance of HEVs are compared. Moreover, the technical routes for each hybrid configuration are highlighted, as configuration optimization methods have become a technical difficulty. In addition, the technological advances in the steady-state energy management strategy and dynamic coordinated control strategy for hybrid powertrain systems are studied. The optimization of the steady-state energy management strategy mainly involves assigning the working point and working range of each power source reasonably. However, with the increase in the complexity of optimization algorithms, real-time control of HEVs still needs to be improved. The optimization of the dynamic coordinated control strategy mainly focuses on the stability and smoothness of the dynamic process involving switching and shifting the working mode. The optimization of the dynamic control process for the system remains to be further improved. It is pointed out that the configurations and strategies should be optimized jointly to obtain a comprehensive improvement in the system performance. This paper provides an informative basis and technical support for the design and optimization of a hybrid powertrain system
Experimental Study on Permeability and Deformation Characteristics of Bedding Shale under Triaxial Shear-Seepage Coupling
The bedding structure of shale is generated during the deposition and formation, which results in shales with prominent anisotropic characteristics. It depends on stability, control of oil and gas storage, and deep exploitation. In addition, the mechanical and permeability parts of bedding shale are very complex when it is under deep underground space with coupled high stress and high seepage. In this study, the black bedding shale was used as the research object, and a series of triaxial shear-seepage coupling tests were carried out. Firstly, the triaxial shear stress-shear strain curves and permeability-shear stress curves of different bedding shales under other triaxial shear-seepage coupling conditions were obtained. Secondly, the failure characteristics and shear deformation characteristics of shale under the shear-seepage coupling effect were explored. The shear stress threshold and permeability evolution law at each stage of shear failure were discussed. Thirdly, the shear strength, failure mode, and mechanism parameters of the black bedding shale under different normal stress and seepage pressure were studied. Fourthly, the linear M-C criterion, Ramamurthy criterion, and Hoek-Brown criterion characterize the variation of damage strength of shale with bedding orientation under triaxial shear-seepage coupling. Those results provide an experimental basis for exploring the anisotropic mechanical characteristics and failure mechanism of bedding shale under shear-seepage coupling
- …