102 research outputs found

    Protein composition of interband regions in polytene and cell line chromosomes of Drosophila melanogaster

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite many efforts, little is known about distribution and interactions of chromatin proteins which contribute to the specificity of chromomeric organization of interphase chromosomes. To address this issue, we used publicly available datasets from several recent Drosophila genome-wide mapping and annotation projects, in particular, those from modENCODE project, and compared molecular organization of 13 interband regions which were accurately mapped previously.</p> <p>Results</p> <p>Here we demonstrate that in interphase chromosomes of <it>Drosophila </it>cell lines, the interband regions are enriched for a specific set of proteins generally characteristic of the "open" chromatin (RNA polymerase II, CHRIZ (CHRO), BEAF-32, BRE1, dMI-2, GAF, NURF301, WDS and TRX). These regions also display reduced nucleosome density, histone H1 depletion and pronounced enrichment for ORC2, a pre-replication complex component. Within the 13 interband regions analyzed, most were around 3-4 kb long, particularly those where many of said protein features were present. We estimate there are about 3500 regions with similar properties in chromosomes of <it>D. melanogaster </it>cell lines, which fits quite well the number of cytologically observed interbands in salivary gland polytene chromosomes.</p> <p>Conclusions</p> <p>Our observations suggest strikingly similar organization of interband chromatin in polytene chromosomes and in chromosomes from cell lines thereby reflecting the existence of a universal principle of interphase chromosome organization.</p

    Overexpression of the SuUR gene induces reversible modifications at pericentric, telomeric and intercalary heterochromatin of Drosophila melanogaster polytene chromosomes

    Get PDF
    The SuUR (suppressor of underreplication) gene controls late replication and underreplication of DNA in Drosophila melanogaster polytene chromosomes: its mutation suppresses DNA underreplication whereas additional doses of the normal allele strongly enhances underreplication. The SuUR protein is localized in late replicating and underreplicating regions. The N-terminal part of the SuUR protein shares modest similarity with the ATPase/helicase domain of SWI2/SNF2 chromatin remodeling factors, suggesting a role in modification of chromatin structure. Here we describe novel structural modifications of polytene chromosomes (swellings) and show that SuUR controls chromatin organization in polytene chromosomes. The swellings develop as the result of SuUR ectopic expression in the transgene system Sgs3-GAL4; UAS-SuUR(+). They are reminiscent of chromosome puffs and appear in similar to190 regions of intercalary, pericentric and telomeric heterochromatin; some of them attain tremendous size. The swellings are temperature sensitive: they are maximal at 29C and are barely visible at 18degreesC. Shifting from 29degreesC to 18degreesC results in the complete recovery of the normal structure of chromosomes. The swellings are transcriptionally inactive, since they do not incorporate [H-3]uridine. The SuUR protein is not visualized in regions of maximally developed swellings. Regular ecdysone-inducible puffs are not induced in cells where these swellings are apparent

    Paucity and preferential suppression of transgenes in late replication domains of the D. melanogaster genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eukaryotic genomes are organized in extended domains with distinct features intimately linking genome structure, replication pattern and chromatin state. Recently we identified a set of long late replicating euchromatic regions that are underreplicated in salivary gland polytene chromosomes of <it>D. melanogaster</it>.</p> <p>Results</p> <p>Here we demonstrate that these underreplicated regions (URs) have a low density of <it>P</it>-<it>element </it>and <it>piggyBac </it>insertions compared to the genome average or neighboring regions. In contrast, <it>Minos</it>-based transposons show no paucity in URs but have a strong bias to testis-specific genes. We estimated the suppression level in 2,852 stocks carrying a single <it>P</it>-<it>element </it>by analysis of eye color determined by the mini-<it>white </it>marker gene and demonstrate that the proportion of suppressed transgenes in URs is more than three times higher than in the flanking regions or the genomic average. The suppressed transgenes reside in intergenic, genic or promoter regions of the annotated genes. We speculate that the low insertion frequency of <it>P-elemen</it>ts and <it>piggyBac</it>s in URs partially results from suppression of transgenes that potentially could prevent identification of transgenes due to complete suppression of the marker gene. In a similar manner, the proportion of suppressed transgenes is higher in loci replicating late or very late in Kc cells and these loci have a lower density of <it>P-elements </it>and <it>piggyBac </it>insertions. In transgenes with two marker genes suppression of mini-<it>white </it>gene in eye coincides with suppression of <it>yellow </it>gene in bristles.</p> <p>Conclusions</p> <p>Our results suggest that the late replication domains have a high inactivation potential apparently linked to the silenced or closed chromatin state in these regions, and that such inactivation potential is largely maintained in different tissues.</p

    Identical Functional Organization of Nonpolytene and Polytene Chromosomes in Drosophila melanogaster

    Get PDF
    Salivary gland polytene chromosomes demonstrate banding pattern, genetic meaning of which is an enigma for decades. Till now it is not known how to mark the band/interband borders on physical map of DNA and structures of polytene chromosomes are not characterized in molecular and genetic terms. It is not known either similar banding pattern exists in chromosomes of regular diploid mitotically dividing nonpolytene cells. Using the newly developed approach permitting to identify the interband material and localization data of interband-specific proteins from modENCODE and other genome-wide projects, we identify physical limits of bands and interbands in small cytological region 9F13-10B3 of the X chromosome in D. melanogaster, as well as characterize their general molecular features. Our results suggests that the polytene and interphase cell line chromosomes have practically the same patterns of bands and interbands reflecting, probably, the basic principle of interphase chromosome organization. Two types of bands have been described in chromosomes, early and late-replicating, which differ in many aspects of their protein and genetic content. As appeared, origin recognition complexes are located almost totally in the interbands of chromosomes

    Genome-wide profiling of nucleosome sensitivity and chromatin accessibility in Drosophila melanogaster

    Get PDF
    textabstractNucleosomal DNA is thought to be generally inaccessible to DNA-binding factors, such as micrococcal nuclease (MNase). Here, we digest Drosophila chromatin with high and low concentrations of MNase to reveal two distinct nucleosome types: MNasesensitive and MNase-resistant. MNase-resistant nucleosomes assemble on sequences depleted of A/T and enriched in G/C-containing dinucleotides, whereas MNase-sensitive nucleosomes form on A/Trich sequences found at transcription start and termination sites, enhancers and DNase I hypersensitive sites. Estimates of nucleosome formation energies indicate that MNase-sensitive nucleosomes tend to be less stable than MNase-resistant ones. Strikingly, a decrease in cell growth temperature of about 10?C makes MNase-sensitive nucleosomes less accessible, suggesting that observed variations in MNase sensitivity are related to either thermal fluctuations of chromatin fibers or the activity of enzymatic machinery. In the vicinity of active genes and DNase I hypersensitive sites nucleosomes are organized into periodic arrays, likely due to 'phasing' off potential barriers formed by DNA-bound factors or by nucleosomes anchored to their positions through external interactions. The latter idea is substantiated by our biophysical model of nucleosome positioning and energetics, which predicts that nucleosomes immediately downstream of transcription start sites are anchored and recapitulates nucleosome phasing at active genes significantly better than sequencedependent models

    Late Replication Domains in Polytene and Non-Polytene Cells of Drosophila melanogaster

    Get PDF
    In D. melanogaster polytene chromosomes, intercalary heterochromatin (IH) appears as large dense bands scattered in euchromatin and comprises clusters of repressed genes. IH displays distinctly low gene density, indicative of their particular regulation. Genes embedded in IH replicate late in the S phase and become underreplicated. We asked whether localization and organization of these late-replicating domains is conserved in a distinct cell type. Using published comprehensive genome-wide chromatin annotation datasets (modENCODE and others), we compared IH organization in salivary gland cells and in a Kc cell line. We first established the borders of 60 IH regions on a molecular map, these regions containing underreplicated material and encompassing ∼12% of Drosophila genome. We showed that in Kc cells repressed chromatin constituted 97% of the sequences that corresponded to IH bands. This chromatin is depleted for ORC-2 binding and largely replicates late. Differences in replication timing between the cell types analyzed are local and affect only sub-regions but never whole IH bands. As a rule such differentially replicating sub-regions display open chromatin organization, which apparently results from cell-type specific gene expression of underlying genes. We conclude that repressed chromatin organization of IH is generally conserved in polytene and non-polytene cells. Yet, IH domains do not function as transcription- and replication-regulatory units, because differences in transcription and replication between cell types are not domain-wide, rather they are restricted to small “islands” embedded in these domains. IH regions can thus be defined as a special class of domains with low gene density, which have narrow temporal expression patterns, and so displaying relatively conserved organization

    Genome-wide profiling of forum domains in Drosophila melanogaster

    Get PDF
    Forum domains are stretches of chromosomal DNA that are excised from eukaryotic chromosomes during their spontaneous non-random fragmentation. Most forum domains are 50–200 kb in length. We mapped forum domain termini using FISH on polytene chromosomes and we performed genome-wide mapping using a Drosophila melanogaster genomic tiling microarray consisting of overlapping 3 kb fragments. We found that forum termini very often correspond to regions of intercalary heterochromatin and regions of late replication in polytene chromosomes. We found that forum domains contain clusters of several or many genes. The largest forum domains correspond to the main clusters of homeotic genes inside BX-C and ANTP-C, cluster of histone genes and clusters of piRNAs. PRE/TRE and transcription factor binding sites often reside inside domains and do not overlap with forum domain termini. We also found that about 20% of forum domain termini correspond to small chromosomal regions where Ago1, Ago2, small RNAs and repressive chromatin structures are detected. Our results indicate that forum domains correspond to big multi-gene chromosomal units, some of which could be coordinately expressed. The data on the global mapping of forum domains revealed a strong correlation between fragmentation sites in chromosomes, particular sets of mobile elements and regions of intercalary heterochromatin

    The Profile of MicroRNA Expression in Bone Marrow in Non-Hodgkin’s Lymphomas

    No full text
    Non-Hodgkin’s lymphomas (NHLs) are a heterogeneous group of malignant lymphomas that can occur in both lymph nodes and extranodal sites. Bone marrow (BM) is the most common site of extranodal involvement in NHL. The objective of this study is to determine the unique profile of miRNA expression in BM affected by NHL, with the possibility of a differential diagnosis of NHL from reactive BM changes and acute leukemia (AL). A total of 180 cytological samples were obtained by sternal puncture and aspiration biopsy of BM from the posterior iliac spine. All the cases were patients before treatment initiation. The study groups were NHL cases (n = 59) and AL cases (acute lymphoblastic leukemia (n = 25) and acute myeloid leukemia (n = 49)); the control group consisted of patients with non-cancerous blood diseases (NCBDs) (n = 48). We demonstrated that expression levels of miRNA-124, miRNA-221, and miRNA-15a are statistically significantly downregulated, while the expression level of let-7a is statistically significantly upregulated more than 2-fold in BM in NHL compared to those in AL and NCBD. ROC analysis revealed that let-7a/miRNA-124 is a highly sensitive and specific biomarker for a differential diagnosis of BM changes in NHL from those in AL and NCBD. Therefore, we conclude that analysis of miRNA expression levels may be a promising tool for early diagnosis of NHL
    corecore