308 research outputs found

    Guiding the One-to-one Mapping in CycleGAN via Optimal Transport

    Full text link
    CycleGAN is capable of learning a one-to-one mapping between two data distributions without paired examples, achieving the task of unsupervised data translation. However, there is no theoretical guarantee on the property of the learned one-to-one mapping in CycleGAN. In this paper, we experimentally find that, under some circumstances, the one-to-one mapping learned by CycleGAN is just a random one within the large feasible solution space. Based on this observation, we explore to add extra constraints such that the one-to-one mapping is controllable and satisfies more properties related to specific tasks. We propose to solve an optimal transport mapping restrained by a task-specific cost function that reflects the desired properties, and use the barycenters of optimal transport mapping to serve as references for CycleGAN. Our experiments indicate that the proposed algorithm is capable of learning a one-to-one mapping with the desired properties.Comment: The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI 2019

    Development and evaluation of a versatile semi-active suspension system for high-speed railway vehicles

    Get PDF
    With the increase in speed of high-speed trains, their vibration will become fiercer and fiercer, especially when the lateral resonance of the car body occurs. This paper develops a versatile semi-active suspension system with variable stiffness (VS) magnetorheological elastomer (MRE) isolators and variable damping (VD) magnetorheological (MR) dampers for high-speed trains, aiming to improve ride comfort by avoiding car body resonance and dissipating vibration energy. As the first step, a multifunction VSVD semi-active suspension system for high-speed railway vehicles was designed and prototyped, including four VS-MRE isolators and two VD-MR dampers. After that, a scaled train model, composing of a car body and a secondary lateral suspension system was designed and built to evaluate the performance of the new VSVD suspension system; a control strategy based on short-time Fourier transform (STFT) and sky-hook was proposed to control the new suspension system. Two different excitations, harmonic excitation and random excitation, were applied to evaluate the train\u27s VSVD suspension. As a comparison, four alternative suspension systems, including passive-off suspension, passive-on suspension, pure VS suspension, and pure VD suspension were also evaluated. The evaluation results verified that the VSVD suspension of the train can avoid lateral resonance of car body and dissipate the vibration energy efficiently. The comparison verified that the VSVD suspension system outperforms the passive-off suspension, passive-on suspension, pure VS suspension, and pure VD suspension

    Idealizing Tauc Plot for Accurate Bandgap Determination of Semiconductor with UV-Vis: A Case Study for Cubic Boron Arsenide

    Full text link
    The Tauc plot method is widely used to determine the bandgap of semiconductors via UV-visible optical spectroscopy due to its simplicity and perceived accuracy. However, the actual Tauc plot often exhibits significant baseline absorption below the expected bandgap, leading to discrepancies in the calculated bandgap depending on whether the linear fit is extrapolated to zero or non-zero baseline. In this study, we show that both extrapolation methods can produce significant errors by simulating Tauc plots with varying levels of baseline absorption. To address this issue, we propose a new method that involves idealizing the absorption spectrum by removing its baseline before constructing the Tauc plot. Experimental verification of this method using a gallium phosphide (GaP) wafer with intentionally introduced baseline absorptions shows promising results. Furthermore, we apply this new method to cubic boron arsenide (c-BAs) and resolve discrepancies in c-BAs bandgap values reported by different groups, obtaining a converging bandgap of 1.835 eV based on both previous and new transmission spectra. The method is applicable to both indirect and direct bandgap semiconductors, regardless of whether the absorption spectrum is measured via transmission or diffuse reflectance, will become essential to obtain accurate values of their bandgaps

    Geochemical differences between subduction- and collision-related copper-bearing porphyries and implications for metallogenesis

    Get PDF
    Porphyry Cu (-Mo-Au) deposits occur not only in continental margin-arc settings (subduction-related porphyry Cu deposits, such as those along the eastern Pacific Rim (EPRIM)), but also in continent-continent collisional orogenic belts (collision-related porphyry Cu deposits, such as those in southern Tibet). These Cu-mineralized porphyries, which develop in contrasting tectonic settings, are characterized by some different trace element (e.g., Th, and Y) concentrations and their ratios (e.g., Sr/Y, and La/Yb), suggesting that their source magmas probably developed by different processes. Subduction-related porphyry Cu mineralization on the EPRIM is associated with intermediate to felsic calc-alkaline magmas derived from primitive basaltic magmas that pooled beneath the lower crust and underwent melting, assimilation, storage, and homogenization (MASH), whereas K-enriched collision-related porphyry Cu mineralization was associated with underplating of subduction-modified basaltic materials beneath the lower crust (with subsequent transformation into amphibolites and eclogite amphibolites), and resulted from partial melting of the newly formed thickened lower crust. These different processes led to the collision-related porphyry Cu deposits associated with adakitic magmas enriched by the addition of melts, and the subduction-related porphyry Cu deposits associated with magmas comprising all compositions between normal arc rocks and adakitic rocks, all of which were associated with fluid-dominated enrichment process. In subduction-related Cu porphyry magmas, the oxidation state (fO2), the concentrations of chalcophile metals, and other volatiles (e.g., S and Cl), and the abundance of water were directly controlled by the composition of the primary arc basaltic magma. In contrast, the high Cu concentrations and fO2 values of collision-related Cu porphyry magmas were indirectly derived from subduction modified magmas, and the large amount of water and other volatiles in these magmas were controlled in part by partial melting of amphibolite derived from arc basalts that were underplated beneath the lower crust, and in part by the contribution from the rising potassic and ultrapotassic magmas. Both subduction- and collision-related porphyries are enriched in potassium, and were associated with crustal thickening. Their high K2O contents were primarily as a result of the inheritance of enriched mantle components and/or mixing with contemporaneous ultrapotassic magmas

    Light Spectrum Impacts on Growth, Molting, and Oxidative Stress Response of the Mud Crab Scylla paramamosain

    Get PDF
    An 8 weeks trial was performed to test the effects of light spectra [full-spectrum, violet (405 nm), blue (470 nm), cyan (500 nm), green (525 nm), yellow (570 nm), and red (625 nm)] on growth performance, molting, antioxidant capacity, stress response and expression of molting, and apoptosis-related genes in Scylla paramamosain. Results showed that spectrum had a significant effect on S. paramamosain physiology. Compared to blue light, crabs exposed to violet light had a significantly lower survival rate (79.5 ± 3.6% vs. 94.9 ± 3.6%), weight gain (49.2 ± 5.4 vs. 67.6 ± 6.7), molt frequency (4.2 ± 0.2 vs. 4.5 ± 0.1), and extended intermolt intervals between instar 1 and 2 stages (C1–C2) (6.3 ± 0.3 vs. 5.0 ± 0.1 days). Expression of the molt-inhibiting hormone (mih) gene was upregulated in crabs reared under violet light. According to the regression analysis, maximum SGR would be at 449.97 nm. Crabs exposed to blue light also had lower melatonin levels than under full-spectrum and lower cortisol levels than violet and yellow groups. Regarding oxidative stress, crabs in full-spectrum had lower H2O2 and MDA contents, however, no significant difference was found in total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and catalase (CAT) in hepatopancreas from crabs under different spectra. Gene expression of hsp40, hsp70, hsp90 were down-regulated in crabs exposed to the full-spectrum light group. Regarding apoptosis-related genes, bcl-2 gene expression in crabs under cyan and the cox IV and caspase 3 in green were upregulated, suggesting cyan light may inhibit, while green light may promote apoptosis. Taken together, these results suggest that blue or cyan light would promote growth performance, while full-spectrum light could reduce stress response in S. paramamosain

    Bifunctional metal phosphide FeMnP films from single source metal organic chemical vapor deposition for efficient overall water splitting

    Get PDF
    Developing stable and efficient bifunctional catalysts for overall water splitting into hydrogen and oxygen is a critical step in the realization of several clean-energy technologies. Here we report a robust and highly active electrocatalyst that is constructed by deposition of the ternary metal phosphide FeMnP onto graphene-protected nickel foam by metal-organic chemical vapor deposition from a single source precursor. FeMnP exhibits high electrocatalytic activity toward both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Utilizing FeMnP/GNF as both the anode and the cathode for overall water splitting, a current density of 10 mA cm−2 is achieved at a cell voltage of as low as 1.55 V with excellent stability. Complementary density functional theory (DFT) calculations suggest that facets exposing both Fe and Mn sites are necessary to achieve high HER activity. The present work provides a facile strategy for fabricating highly efficient electrocatalysts from earth-abundant materials for overall water splitting

    Investigation on the propagation characteristics of pressure wave during managed pressure drilling

    Get PDF
    The small difference between formation pressure and fracture pressure in offshore oil and gas reservoirs poses a huge challenge to drilling. Managed pressure drilling (MPD) technology, as a drilling technique that can accurately control bottomhole pressure, is an effective technique to solve this challenge. In MPD technology, the pressure wave propagation behavior and mechanism in the wellbore induced by wellhead backpressure are crucial for parameter design and efficient application. In this paper, pressure wave propagation characteristics and mechanism in gas-liquid flow were investigated with a new proposed pressure wave velocity model that considers inter-phase mass transfer effect. This new model and its solution algorithm were verified with experimental data in literature. The influence of gas invasion stage, drilling fluid type, drilling fluid density and backpressure on pressure wave propagation characteristics were investigated. Results show that the time for pressure wave induced by wellhead backpressure in the wellbore cannot be ignored in the design of the backpressure value during MPD. This propagation time increases with occurrence of gas invasion. Moreover, the propagation time in water-based drilling fluid is longer than that in oil-based drilling fluid, which is because the interphase mass transfer between invaded gas and oil-based drilling fluid. The influence mechanism of high drilling fluid density and wellhead backpressure on pressure wave propagation characteristics is due to the suppression of gas invasion process. These findings could be used as guides in parameters design and optimization in MPD
    • …
    corecore