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Abstract 

With the increase in speed of high-speed trains, their vibration will become fiercer and fiercer, 
especially when the lateral resonance of the car body occurs. This paper develops a versatile semi-
active suspension system with variable stiffness (VS) magnetorheological elastomer (MRE) 
isolators and variable damping (VD) magnetorheological (MR) dampers for high-speed trains, 
aiming to improve ride comfort by avoiding car body resonance and dissipating vibration energy. 
As the first step, a multifunction VSVD semi-active suspension system for high-speed railway 
vehicle was designed and prototyped, including four VS-MRE isolators and two VD-MR dampers. 
After that, a scaled train model, composing of a car body and a secondary lateral suspension system 
was designed and built to evaluate the performance of the new VSVD suspension system; a control 
strategy based on short-time Fourier transform (STFT) and sky-hook was proposed to control the 
new suspension system. Two different excitations, harmonic excitation and random excitation, were 
applied to evaluate the train’s VSVD suspension. As a comparison, four alternative suspension 
systems, including passive-off suspension, passive-on suspension, pure VS suspension, and pure 
VD suspension were also evaluated. The evaluation results verified that the VSVD suspension of 
the train can avoid lateral resonance of car body and dissipate the vibration energy efficiently. The 
comparison verified that the VSVD suspension system outperforms the passive-off suspension, 
passive-on suspension, pure VS suspension, and pure VD suspension.  

Keywords: high-speed train; vibration control; variable stiffness and variable damping; 
magnetorheological technology  

1. Introduction 

The development and advancement of high-speed trains have been playing a vital role in promoting 
economic development in various countries. However, as the speed of high-speed trains increases, 
the vibrations of their car bodies significantly increase and the ride comfort and running safety of 
the train reduces sharply [1, 2]. Therefore, suppressing the car body vibration is essential for 
improving the operational safety and ride comfort of the railway vehicle.  
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The traditional method of suppressing the vibration of a train is to adopt a passive suspension system, 
which has been studied by many scholars [3-6]. Specifically, Chi et al. [3] studied the influence of 
train’s suspension parameters on its running performance. It was found that increasing the lateral 
damping and reducing the lateral stiffness of the secondary suspension appropriately are beneficial 
to improve the lateral stability of high-speed trains. Younesian et al. [4] optimized the damping of 
the secondary suspension of a high-speed train and proposed an optimal suspension system suitable 
for high-speed train based on frequency domain spectrum analysis. Qin et al. [5] studied the effect 
of the stiffness and damping of the secondary lateral suspension on the train's critical speed and 
wheel-rail wear numerically and optimized the stiffness and damping parameters of the passive 
suspension system. Jin et al. [6] also analyzed the influence of the lateral and longitudinal damping 
of the secondary suspension on the dynamic performance of a railway vehicle, and then optimized 
the lateral damping coefficient of the secondary suspension of a train. The above research focuses 
on passive suspension systems; however, the parameters of these systems cannot be adjusted in real 
time according to different operation speeds, different track irregularities, and different loading 
conditions because the parameters of the passive suspension system are fixed. In order to overcome 
the limitations of passive suspension, researchers have been investigating adaptive suspension 
system to improve the vibration reduction performance of high-speed trains. For instance, active 
suspension systems have been applied on high-speed train suspension systems [7-9]. In particular, 
Maruyama et al. [7] proposed an active suspension system to improve the ride comfort of railway 
vehicles, and conducted experimental evaluation using a Series 500 Shinkansen railway vehicles of 
Japan. The results show that the active suspension system can ensure the ride comfort of railway 
vehicles at high speed. Orvnas [8] and Qazizadeh [9] applied active control to the secondary lateral 
suspension system of rail vehicles and the testing results show that active suspension can provide 
better ride comfort than passive suspension. Although the active suspension can improve the 
running performance of the rail vehicle, the energy consumption and hardware cost of active 
suspension system are high. Moreover, active control has high possibility to cause instable problem 
to the train system, which also limits its practical application in high speed trains.  

Semi-active suspension, as another typical adaptive suspension system, has gained more and more 
attention due to its lower energy consumption and controllable parameters that can be adjusted in 
real time [10-16]. For example, variable orifice dampers and smart-fluid-based dampers have been 
developed to suppress the vibration of high-speed railway vehicles [17-19]. The semi-active 
suspension based on the variable orifice dampers realize damping variation by controlling the 
mechanical valve to change the orifice size, comparatively, the smart-fluid-based dampers adjust 
damping by controlling the viscosity of the fluids. Comparing with orifice changing damper, these 
adaptive dampers have advantages of less mechanical parts, improved stability, lower maintenance 
costs, and quicker response [19]. Electrorheological (ER) fluids and magnetorheological (MR) 
fluids are two typical fluids which have been widely used to develop adaptive dampers [20]. They 
can change from a free-flowing fluid state to a semi-solid state in milliseconds when electrical or 
magnetic fields are applied to them. Since the ER fluid is energized by applying an electric field of 
up to 8 kV/mm, the safety of the ER semi-active suspension has been a big concern for its practical 
application [21, 22]. On the contrary, MR fluids only require a small voltage to control its viscosity 
and have been widely used to develop variable damping suspension systems for high-speed trains 
[23-31]. As an example, Wang et al. [24, 25] applied MR dampers to build semi-active secondary 
lateral suspension for train to improve its ride comfort. A 17-Degree-of-Freedom (DOF) rail vehicle 
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model was also built to evaluate the performance of the MR suspension numerically. Zong et al. 
[26] built a H∞ control strategy to control the MR suspension system for high speed train to 
improve its dynamic performance. Sun et al. [27] built four MR dampers for high speed train and 
experimentally verified that MR suspension system is able to improve the critical speed of the 
railway vehicle. Shin et al. [28] also conducted research on the application of MR damper on high-
speed trains and evaluated the ride comfort and lateral stability of the railway vehicle which is 
installed with MR dampers.  

Although the controllable-damping suspension system can greatly improve the ride comfort and 
operational stability of railway vehicles, the stiffness of the secondary lateral suspension of the 
railway vehicles cannot be adjusted, which fixes the resonance frequency of the vehicle body in 
lateral direction. According to the studies of Chi et al. [32] and H. Claus et al. [33], the track 
excitation frequency increases with the increase of the vehicle speed, which means the excitation 
frequency will be equal to the resonance frequency of high-speed train at certain operation speed. 
This resonance will induce serious laterally vibration of the car body, which will significantly reduce 
the ride comfort and safety of the high-speed trains. Therefore, apart from damping controllable 
suspension, stiffness adjustable suspension system needs to be developed urgently to avoid the 
lateral resonance of the car body and improve the dynamics performance of the high-speed railway 
vehicle.  

Based on this motivation, this paper develops a versatile VSVD suspension system for high speed 
trains. This advanced suspension will meet the demanding requirements during different working 
scenarios by realizing non-resonance control with stiffness controllability and efficient vibration 
energy dissipation with damping controllability. The structure of this paper is as follows. In Section 
2, the detailed design, working principle of the multifunction VSVD semi-active suspension, VSVD 
devices and a small scaled high-speed railway vehicle model are presented, along with the testing 
results of the VS and VD devices. Section 3 proposes a VSVD control strategy and presents the 
evaluation of multifunction semi-active suspension on a small-scale high-speed railway vehicle 
under harmonic and random excitation. Lastly, Section 4 concludes this paper.  

2. Design, prototype and testing of the multifunctional semi-active suspension system for high-
speed railway vehicle 

This chapter describes the working principle of the proposed multifunctional semi-active suspension 
system for high-speed railway vehicles, as well as the prototype, simulation, and testing of the 
corresponding VS isolator and VD dampers. 

2.1 The structure, design and working principle of the multifunctional VSVD semi-active suspension 
system 

In order to verify the effect of the VSVD suspension system on the high-speed railway vehicle, in 
this paper a small-scale railway vehicle system is designed and manufactured, as shown in Figure 
1. This railway vehicle system mainly consists of a car body, a secondary lateral semi-active 
suspension system, and two bogies. Considering the maximum vertical support capability of the test 
bench, the mass of the scaled car body is chosen to be 70 kg. The actual car body mass is 36000 kg; 
thus the weight ratio of the scaled car body and the actual car body is approximately 1:512. 
According to the scaling rule used in A. Jaschinski [34] and Y.J. Shin [35], the scale factor of the 
train size used in this paper is 1: √5123 = 1: 8. Therefore, other dimensions and parameters of the 



scaled train can be determined by the scaling factor and is given in Table 1. For the VSVD 
suspension system, both the stiffness and damping are controlled according to different working 
scenarios. The schematic diagram is shown in Figure 1(a) and (b), where the 𝑦𝑦𝑐𝑐, 𝑦𝑦𝑏𝑏, 𝑘𝑘𝑦𝑦 and 𝑐𝑐𝑦𝑦 
represent the lateral displacement of the car body, the lateral displacement of the bogies, the 
secondary lateral variable stiffness and the damping, respectively. The secondary lateral semi-active 
suspension system of the railway vehicle, as shown in Figure 1(c), mainly includes four VS-MRE 
isolators and two VD-MR dampers. The four MRE isolators are used as the secondary vertical 
springs to support the weight of the railway vehicle and provide controllable lateral stiffness to the 
train system. The MRE isolator can replace the air spring in the train’s suspension system without 
large configuration change to the train. The two MR dampers are used as secondary lateral dampers 
and provide controllable lateral damping to train’s suspension. This research focuses on secondary 
suspension system, and the bogie structure has been simplified as a support plate, as shown in Figure 
1(c). 

 

(a) Top view of the railway vehicle model. 

 

(b) Back view of Rear and Front bogie of the railway vehicle. 



 

(c) Secondary suspension system of the high-speed railway vehicle. 

Figure 1. Structure and prototype of the scaled railway vehicle. 

Table 1. Scaling factors and parameter values. 

Parameters Full-scale Scale factor Small-scale 

Mass of car body (kg) 36000 
1
𝜑𝜑3 70 

Length of car body frame (m) 20 
1
𝜑𝜑 1.7 

Width of car body frame (m) 6.25 
1
𝜑𝜑 0.78 

For the VSVD semi-active suspension system, all the MR dampers and MRE isolators will be 
properly controlled to achieve a variable stiffness variable damping suspension system. As a 
comparison, four alternative suspension systems were also designed and tested, which are detailed 
as follows: 

Case 1: passive-off suspension: passive-off suspension system uses MRE isolators and MR dampers 
as passive components without applying control strategies to them. In this case, the stiffness and 
damping of the suspension system are fixed and the currents to the MRE isolators and MR dampers 
are set to be constant 3 A and 0 A, respectively. 

Case 2: passive-on suspension: passive-on suspension system uses MRE isolators and MR dampers 
as passive components and the currents to the MRE isolators and MR dampers are set to be constant 
3 A and 2 A, respectively. 

Case 3: VS suspension. VS suspension system only applies a control strategy to the MRE isolators 
while the MR dampers serve as passive components. The VS suspension can only change its 
stiffness in real time and cannot adjust its damping. In this way, the current of the MRE isolators is 
controlled while the current of the MR dampers is set to be constant 0 A.  



Case 4: VD suspension. VD suspension is a suspension system that uses the MR dampers as 
controllable components while the MRE isolators work as passive components. The VD suspension 
can adjust its damping in real time while its stiffness is fixed. The current to the MRE isolators is 
set to be 3 A. 

2.2 Design and testing of the VS isolators and VD dampers 

2.2.1 Design and testing of the MRE isolators 

MRE is an intelligent material which has been widely used in vibration control [36, 37]. Many 
scholars have studied the MRE isolator and used it as variable stiffness devices [38, 39]. As a kind 
of intelligent structure, the stiffness of the MRE device can be controlled by adjusting the current to 
its electromagnetic coil. What’s more, the configuration of the MRE isolator is similar to the air 
spring of the train, as a result, MRE isolator can be used as smart air spring with variable stiffness 
characteristics to change the lateral natural frequency of the car body. In other words, it is possible 
to avoid the lateral resonance of the train body by controlling the stiffness of the MRE isolators. 

Figure 2(a) shows the structure and prototype of the proposed MRE isolator developed by our group 
[40, 41]. This MRE isolator mainly consists of an electromagnetic coil, two permanent magnets, a 
steel yoke, two steel plate and MRE layers. The two permanent magnets are placed at the ends of 
the MRE layers which is made of 10 layers of MRE round wafer and 11 layers mild steel bonded 
together with a strong adhesive. The MRE layers and the permanent magnet are surrounded by an 
electromagnetic coil, which is placed inside the steel yoke. Two steel plates are mounted to the top 
and bottom of the permanent magnets, respectively. A gap is left between the upper steel plate and 
the steel yoke to allow relative movement between top plate and bottom plate.  

The working principle of the MRE isolator can be described as follows. Applying currents in 
different directions to the electromagnetic coil can produce magnetic fields in different directions. 
This paper defines the direction of the current to be positive when the direction of the magnetic field 
generated by the current in the electromagnetic coil is the same with the direction of the magnetic 
field generated by the permanent magnet. Otherwise, the direction of the current in electromagnetic 
coil is defined as a negative current. When the electromagnetic coil acts as a positive current, the 
magnetic field in the MRE layers is enhanced. The larger the positive current applied, the stronger 
the magnetic field in the MRE layers, until the magnetic field saturates. It should be noted that in 
this study, only positive current was used, however, given the initial isolator stiffness was low. At 
this time, the horizontal stiffness of the MRE layers gradually increases with the increase of 
controlling current. The force generated by the MRE isolator can be calculated by [42-44]: 

𝐹𝐹1 = 𝐾𝐾′𝑥𝑥 + 𝐾𝐾′′

Ω
�̇�𝑥 = 𝐺𝐺′𝐴𝐴

𝑛𝑛ℎ
𝑥𝑥 + 𝐺𝐺′′𝐴𝐴

𝑛𝑛ℎΩ
�̇�𝑥                          (1) 

where 𝐾𝐾′  is the storage or effective stiffness, 𝐾𝐾′ = 𝐺𝐺′𝐴𝐴/ℎ ; 𝐾𝐾′′  is the loss stiffness, 𝐾𝐾′′ =
𝐺𝐺′′𝐴𝐴/ℎ; 𝐾𝐾′′/Ω is the equivalent damping; 𝑥𝑥 and �̇�𝑥 are the displacement and velocity of top steel 
plate relative to the bottom steel plate, respectively; Ω  is the frequency; 𝐺𝐺′  and 𝐺𝐺′′  are the 
storage and loss modulus of MRE, respectively, and their relationship to the magnetic field strength 
are shown in the Appendix (Section A); 𝐴𝐴 and ℎ are the cross sectional areas and thickness of the 
MRE layers, respectively, 𝐴𝐴 = 𝜋𝜋(𝑑𝑑/2)2, 𝑑𝑑 is the diameter of the MRE layers; 𝑛𝑛 is the number 
of layers of MRE sheet.  



The dimensions of the MRE isolator are shown in Figure 2(a). The main prototypes parameters of 
the MRE isolator can be calculated according to the required stiffness of scaled train and are given 
in Table 2. The wire diameter of electromagnetic coil is 1 mm, and the number of turns of the 
electromagnetic coils is 1000.  

 

Figure 2. Design, prototype and testing of the MRE isolator: (a) structural schematic, (b) 
components photograph, (c) assembly photograph, (d) testing system. 

Table 2. The main parameters of the MRE isolator. 

Component Parameter Component Parameter 

𝑑𝑑 (mm) 35  ℎ (mm) 1.8 

𝑛𝑛 10 t (mm) 2 

l (mm) 90 h1 (mm) 25 

d1 (mm) 50 d2 (mm) 80 

d3 (mm) 88   

In order to analyze the property of the MRE isolator, the magnetic field across the MRE layers are 
simulated using COMSOL. The simulation results are shown in the Appendix (Section A). Then the 
force generated by the MRE isolator under external excitation can be calculated according to 
equation 1. Figure 3 shows the force-displacement relationship of the MRE isolator, with an 
excitation frequency of 5 Hz and current varying from 0 A to 3 A with a step of 1 A. It can be seen 
that when a positive current is applied to the MRE isolator, its slope gradually increases with the 
increase of the current, which means that its stiffness can be controlled by the current. 

After the design and analysis, four MRE isolators were manufactured. The physical components 
and assembly of the MRE isolator are shown in Figure 2(b) and Figure 2(c), respectively. To further 
explore the dynamic characteristics of the MRE isolator, a series of tests were carried out using the 
equipment shown in Figure 2(d). The MRE isolator was fixed to the horizontal vibration platform, 
and the MRE isolator was excited by a shaker that was controlled by a power amplifier and a 

(a) 

(b) 

(c) 

(d) 



LabVIEW program. The horizontal displacement of the MRE isolator was measured by a laser 
sensor. The force sensor was connected to the top plate of the MRE isolator for measuring the force 
in the horizontal direction. During the test, a DC power supply provided current to the 
electromagnetic coil. The magnitude of the magnetic field crossing MRE layers can be adjusted by 
the magnitude and direction of the current. The laser sensor and force sensor were connected to a 
myRIO controller to collect the generated force and excitation displacement. The measured data 
was recorded to the computer by the LabVIEW program. 

Figure 3 also shows testing results of the force-displacement relationship of the MRE isolator, with 
a test frequency of 5 Hz and current 𝐼𝐼𝑠𝑠 varying from 0 A to 3 A with a step of 1 A. It is worth to 
note that the overall stiffness increases as the current applied to the MRE isolator increases, and the 
simulation results and experimental results match well with each other. In order to evaluate the 
influence of the current on the stiffness of the MRE isolator, the effective stiffness is calculated. 
The calculating formula is as follows [39]: 

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

=
𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐹𝐹𝑚𝑚𝑚𝑚𝑛𝑛

∆𝑚𝑚𝑚𝑚𝑚𝑚 − ∆𝑚𝑚𝑚𝑚𝑛𝑛
,                                                                 (2) 

where 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚  and 𝐹𝐹𝑚𝑚𝑚𝑚𝑛𝑛  are the maximum and minimum force values generated by the MRE 
isolator, respectively. And ∆𝑚𝑚𝑚𝑚𝑚𝑚 and ∆𝑚𝑚𝑚𝑚𝑛𝑛 represent the maximum and minimum displacements 
during the test. 

The effective stiffness versus current is shown in Table 3, which illustrates that the increase of 𝐼𝐼𝑠𝑠 
from 0 A to 3 A enhances the stiffness from 4.18 kN m⁄  to 8.32 kN m⁄ , and the effective stiffness 
increases by 2 times. 
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Figure 3. Force-displacement curve of the MRE isolator. 



Table 3. Effective stiffness of the MRE isolator versus 𝐼𝐼𝑠𝑠. 

𝐼𝐼𝑠𝑠 (A) 0 1 2 3 

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 (kN/m) 4.18 5.05 6.76 8.32 

2.2.2 Design and testing of the MR dampers 

Figure 4(a) shows the structure and prototype of the proposed MR damper. This damper mainly 
consists of piston shaft, piston, electromagnetic coil, hydraulic cylinder, magnetorheological fluid, 
floating piston and accumulator spring. The electromagnetic coil is wound around the piston. The 
piston and electromagnetic coil are placed in the hydraulic cylinder, which is filled with MR fluid. 
An accumulator spring connected to the floating piston is fixed to the bottom cover, and the spring 
supports the floating piston to provide a preload pressure to the MR fluid. The shaft is connected to 
the piston and then passes through the top cover which is connected to the cylinder. When the shaft 
moves in the hydraulic cylinder, the MR fluid flows through the gap between the piston and the 
cylinder. The larger the current applied to the electromagnetic coil, the larger the magnetic field, 
and the higher the viscosity of the magnetorheological fluid will be, which enlarge the damping 
force. The damping force of the MR damper can be calculated as [45-47]: 

𝐹𝐹2 = 12𝜂𝜂𝜂𝜂𝐴𝐴𝑝𝑝2

𝜋𝜋𝜋𝜋ℎ3
𝑣𝑣 + 3𝜂𝜂𝜏𝜏𝑦𝑦𝐴𝐴𝑝𝑝

ℎ
𝑠𝑠𝑠𝑠𝑛𝑛𝑣𝑣,                         (3) 

where 𝜂𝜂 is the dynamic viscosity of the MR fluid; 𝑙𝑙 is the effective length of the piston, 𝑙𝑙 = 𝐿𝐿 −
𝐿𝐿1; 𝐴𝐴𝑝𝑝 is the effective area of the piston, 𝐴𝐴𝑝𝑝 = 𝜋𝜋(ℎ1 + 𝑟𝑟)2 − 𝜋𝜋𝑟𝑟02; ℎ1 is coil groove depth; 𝑟𝑟 is 
the core radius; 𝑟𝑟0 is the shaft radius; 𝐷𝐷 is the average diameter of the gap, 𝐷𝐷 = 2(ℎ1 + 𝑟𝑟) + ℎ; 
ℎ is the gap height between the piston and the cylinder; 𝜏𝜏𝑦𝑦 is the shear yield strength of the MR 
fluid, and its relationship to the magnetic field strength is shown in Fig. A3 in the Appendix (Section 
B); 𝑣𝑣 is the speed of movement of the piston relative to the cylinder.  

The main parameters of the VD-MR damper can be calculated according to the required damping 
of scaled train and are given in Table 4. The wire diameter of the electromagnetic coil is 1 mm and 
the number of turns of the coil is 90.  

 

(a) (b) (c) (d) 



Figure 4. Design, prototype and testing of the MR damper: (a) structural schematic, (b) 
components photograph, (c) assembly photograph, (d) testing system. 

Table 4. The main parameters of the VD-MR damper. 

Component Parameter Component Parameter 

L (mm) 30 𝑟𝑟 (mm) 7.5 

ℎ1 (mm) 5 h (mm) 1 

𝑟𝑟0 (mm) 6 𝐿𝐿1 (mm) 20 

t (mm) 4 𝜂𝜂 (Pa ∙ s) 0.3825 

The magnetic field analysis of the MR damper is conducted and is shown in the Appendix (Section 
B). Then the damping force generated by the MR damper under different currents, excitation 
frequencies and amplitudes can be calculated using equation 3. The results are shown in Figures 5, 
6 and 7, respectively.  

After the analysis, two MR dampers were manufactured. The components and assembly of the MR 
damper are shown in Figure 4(b) and (c), respectively. The MTS testing was conducted to 
investigate how the MR damper behaves under a range of conditions. The MTS test system shown 
in Figure 4(d) consists of a computer, controller, data acquisition board, force sensor, power supply, 
and hydraulic cylinder. The motion of the hydraulic cylinder can be programmed by computer 
software and controlled by the controller to move according to a predetermined path, and then 
transferred the collected data to the computer via a data acquisition board for recording. A harmonic 
excitation with a single frequency of 3 Hz and an amplitude of 7 mm was chosen to excite the system. 
To obtain the variable damping performance of the damper, the current 𝐼𝐼𝑑𝑑  applied to the MR 
damper was varied from 0 A to 2 A with a step of 1 A. Then the effect of the excitation frequency 
and amplitudes on damping coefficient were also tested with different excitation frequencies and 
amplitudes.  

Figure 5 also shows the testing results of the relationship of the damping force and displacement 
under different currents with the test excitation frequency to be 3 Hz and the amplitude to be 7 mm. 
It can be seen that the damping force increases as the current applied and the test results match the 
simulation results very well. In order to evaluate the magnitude of the damping force under different 
currents, the effective damping coefficient calculated as follows [39]: 

𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐸𝐸 (2𝜋𝜋2𝑓𝑓𝑋𝑋02)⁄ ,                             (4) 

where 𝑋𝑋0 is the excitation amplitude and 𝑓𝑓 is the excitation frequency. The energy dissipated by 
the MR damper in one cycle, 𝐸𝐸, is represented by the area enclosed within the hysteresis loop, 
which is given as: 

                                𝐸𝐸 = ∫ 𝐹𝐹�̇�𝑧𝑑𝑑𝑑𝑑1 𝑒𝑒⁄
0 ,                                (5) 

where 𝐹𝐹 is the force generated by the MR damper and �̇�𝑧 is the piston velocity.  



Table 5 gives the equivalent damping coefficients of the damper under different currents. It can be 
obtained that the equivalent damping coefficient increase more than 3 times as the increase of the 
current from 0 A to 2 A. 
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Figure 5. Force-displacement loop of the MR damper under different currents with frequency of 3 
Hz and amplitude of 7 mm. 

Table 5. Effective damping coefficient of MR damper. 

𝐼𝐼𝑑𝑑 (A) 0 1 2 

𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 (N∙s/m) 215.5 444.4 704.8 

The influence of the excitation frequency and displacement on damper performance was also 
conducted and the testing results are given in Figures 6 and 7, respectively. Figure 6 presents the 
influence of excitation frequency on damper performance with the excitation displacement to be 7 
mm and the current to be 1 A. The excitation frequencies of 1 Hz, 3 Hz, and 5 Hz were used to test 
the damper as well. It can be seen that the damping force and vibration energy consumption of the 
damper is not sensitive to the excitation frequency. Figure 7 shows the damping hysteresis loop 
under different excitation displacements. The excitation frequency is 3 Hz and the current is 1 A. It 
can be seen that the maximum damping force does not change when the same frequency and the 
same current act. As a result, the excitation amplitude barely affects the damping force of the MR 
damper either. According to the above analysis, the frequency and displacement of the MR damper 
barely affect the damper performance. It can also be seen from the figures that the simulation results 
fit the testing results well.  
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Figure 6. Force-displacement curve of MR damper under different frequency with current of 1 A 
and amplitude of 7 mm. 
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Figure 7. Force-displacement curve of MR damper under different amplitude with current of 1 A 
and frequency of 3 Hz. 

3. Experiment testing and analysis of the versatile VSVD semi-active suspension for railway 
vehicle 



3.1 A scaled train testing system 

Figure 8 shows the prototype and experiment setup of the small-scale railway vehicle testing system. 
This system mainly includes two laser displacement sensors, two acceleration sensors, a support 
plate, a 6-degrees-of-freedom (6-DOF) vibration platform, a railway vehicle car body model and 
the suspension system. The displacements and accelerations of the vehicle car body and the support 
plate are tested by two displacement sensors and the two accelerometers, respectively. The support 
plate is fixed on the 6-DOF vibration platform. The 6-DOF vibration platform can provide lateral 
vibration excitation to the vehicle to simulate the real excitation from bogie to car body. The 
suspension system consists of four MRE isolators and two MR dampers that are mounted between 
the car body and the support plate to provide lateral stiffness and damping force, respectively.  

The details of the testing system are also shown in Figure 8. The set excitation displacement signal 
is read by the LabVIEW software in PC 1. Then six hydraulic cylinders are controlled by NI 
CompactRio controller to trace the set excitation displacement, and drive the 6-DOF vibration 
platform to move. The support plate moves along with the 6-DOF vibration platform and transmits 
the vibration excitation through the suspension system to the car body. The lateral displacements 
are measured by laser displacement sensors, and the lateral accelerations are measured by 
accelerometers. The displacement and acceleration signals are recorded and stored in the PC 2 via 
the NI myRIO controller. After the data is analyzed by the computer software LabVIEW using the 
control algorithm, the voltage control signal is sent to the NI myRIO controller. Then the NI myRIO 
controller controls the power amplifiers to generate control current 𝐼𝐼𝑠𝑠 to the MRE isolators and 
control current 𝐼𝐼𝑑𝑑 to the MR dampers to change the stiffness and damping of the suspension system. 
Thereby realizing real-time control of the VSVD semi-active suspension system of the railway 
vehicle.  
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Figure 8. Test system of the railway vehicle with VSVD semi-active suspension. 



3.2 Controller design for the versatile semi-active suspension 

In this section, a VS controller based on STFT to avoid the lateral resonance of the car body and a 
VD controller based on sky-hook for better improving the ride comfort of the high-speed railway 
vehicle were designed. The dynamic performance of the vehicle installed with the controlled 
suspension system under harmonic excitation and random excitation is evaluated and analyzed. As 
a comparison, the experiments of the high-speed railway vehicle installed with passive suspension, 
VS suspension, and VD suspension were also conducted. 

Since the stiffness and damping of the semi-active suspension system for the railway vehicle are 
separately controlled in real time, two different control strategies have been designed for the MRE 
isolators and the MR dampers respectively. For the VS controller, the track excitation frequency 
increases with the increase of the running speed; the lateral resonance frequency of the railway 
vehicle car body with passive suspension is fixed; thus, lateral resonance of the car body at a certain 
running speed [37] will occur during train’s accelerating. In order to avoid the lateral resonance of 
the car body and pick the stiffness changing frequency, the vehicle lateral vibration transmission 
rate of large stiffness (𝐼𝐼𝑠𝑠 = 3 𝐴𝐴) and small stiffness (𝐼𝐼𝑠𝑠 = 0 𝐴𝐴) of the MRE isolators was tested 
firstly. Figure 9 is a plot of lateral vibration transmissibility as a function of harmonic excitation 
frequency with a lateral excitation amplitude of 1 mm and the excitation frequency varying from 1 
Hz to 5.5 Hz. The calculation formula of the vibration transmission rate is as follows: 

η

=
𝑅𝑅𝑅𝑅𝑅𝑅(𝑦𝑦𝑐𝑐)
𝑅𝑅𝑅𝑅𝑅𝑅(𝑦𝑦𝑏𝑏)

.                                                                   (6) 

Where η is the lateral vibration transmissibility from the bogie to the car body of the railway 
vehicle, and RMS(𝑦𝑦𝑐𝑐) and RMS(𝑦𝑦𝑏𝑏) are the Root-Mean-Square (RMS) values of the car body 
displacement and the bogie displacement, respectively. 

It can be seen that if the large stiffness is taken as the stiffness of the passive suspension system, the 
vehicle car body will experience lateral resonance near the excitation frequency of 3.5 Hz. When 
the small stiffness is chosen for the suspension system, the lateral vibration transmission at the 
frequency of 3.5 Hz is greatly reduced. The vibration transmission of the large stiffness and the 
small stiffness cross at the excitation frequency of 3.1 Hz, which is defined as switching frequency 
𝑓𝑓0. The ideal scenario is to control the stiffness of the suspension to be soft when the excitation 
frequency is higher than 3.1 Hz and to be hard when the excitation frequency is lower than 3.1 Hz. 
Then the minimum transmissibility can be achieved. The detailed control strategy is expressed as: 

  𝑘𝑘𝑦𝑦

= �
 𝑘𝑘𝜂𝜂𝑚𝑚𝑙𝑙𝑙𝑙𝑒𝑒 (𝐼𝐼𝑠𝑠 = 3 𝐴𝐴),𝑓𝑓𝑐𝑐 < 𝑓𝑓0 
𝑘𝑘𝑠𝑠𝑚𝑚𝑚𝑚𝜂𝜂𝜂𝜂  (𝐼𝐼𝑠𝑠 = 0 𝐴𝐴).𝑓𝑓𝑐𝑐 ≥ 𝑓𝑓0

                                                       

Where 𝑘𝑘𝜂𝜂𝑚𝑚𝑙𝑙𝑙𝑙𝑒𝑒  and 𝑘𝑘𝑠𝑠𝑚𝑚𝑚𝑚𝜂𝜂𝜂𝜂  are the maximum and minimum stiffness of the MRE isolator, 
respectively;  𝑓𝑓𝑐𝑐 is the dominant frequency of the vibration, which is obtained by STFT of the 
lateral displacement of the bogie. The calculation formula of 𝑓𝑓𝑐𝑐 using STFT is as follows: 

𝑦𝑦𝜏𝜏(𝑑𝑑)
= 𝑦𝑦(𝑑𝑑)𝜑𝜑(𝑑𝑑
− 𝜏𝜏),                                                                       



where 𝜏𝜏 is the fixed time, and 𝑑𝑑 is the running time. 𝑦𝑦𝜏𝜏(𝑑𝑑) is a conversion function, and 𝜑𝜑(𝑑𝑑) 
is a window function. 𝑦𝑦(𝑑𝑑) is the lateral displacement signal from bogie of the train.  

Then the Fourier transform for the modified signal is calculated as (9). 

𝑌𝑌𝜏𝜏(𝜔𝜔) =
1

√2𝜋𝜋
�𝑦𝑦(𝑑𝑑)𝜑𝜑(𝑑𝑑 − 𝜏𝜏)𝑒𝑒−𝑗𝑗𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑.                                               

The energy density of the windowed signal at the fixed time 𝜏𝜏 can be calculated, which can 
provide the time-frequency distribution. 

P(τ,ω) = |𝑌𝑌𝜏𝜏(𝜔𝜔)|2 = �
1

√2𝜋𝜋
�𝑦𝑦(𝑑𝑑)𝜑𝜑(𝑑𝑑 − 𝜏𝜏)𝑒𝑒−𝑗𝑗𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑�

2

.                               

The instantaneous frequency at time 𝜏𝜏 is given by 

𝑓𝑓𝑐𝑐(𝜏𝜏) = 𝜔𝜔𝜏𝜏 =
1

|y(𝜏𝜏)|2 �𝜔𝜔|𝑌𝑌𝜏𝜏(𝜔𝜔)|2𝑑𝑑𝜔𝜔.                                                
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Figure 9. Transmissibility of the suspension system with large and small lateral stiffness. 

As for the VD controller, the classic sky-hook controller was chosen, which is reliable and practical. 
The sky-hook controller can be described as: 

𝑐𝑐𝑦𝑦 = �
𝑐𝑐𝜂𝜂𝑚𝑚𝑙𝑙𝑙𝑙𝑒𝑒 (𝐼𝐼𝑑𝑑 = 1 𝐴𝐴),𝑦𝑦�̇�𝑐 ∙ (𝑦𝑦�̇�𝑐 − 𝑦𝑦�̇�𝑏) ≥ 0
𝑐𝑐𝑠𝑠𝑚𝑚𝑚𝑚𝜂𝜂𝜂𝜂 (𝐼𝐼𝑑𝑑 = 0 𝐴𝐴).𝑦𝑦�̇�𝑐 ∙ (𝑦𝑦�̇�𝑐 − 𝑦𝑦�̇�𝑏) < 0

                                         

Where 𝑐𝑐𝜂𝜂𝑚𝑚𝑙𝑙𝑙𝑙𝑒𝑒 and 𝑐𝑐𝑠𝑠𝑚𝑚𝑚𝑚𝜂𝜂𝜂𝜂 are the large damping under 1A current energizing and small damping 
under 0 A current, respectively; 𝑦𝑦�̇�𝑏 and 𝑦𝑦�̇�𝑐 are the lateral velocity of the car body and the support 
plate, respectively. 

3.3 Evaluation and analysis of different suspension systems  

3.1 Hz 



Case 1: evaluation under harmonic excitation. 

Figure 10 presents the acceleration of the car body controlled by VSVD suspension system, as well 
as the acceleration of car body controlled by pure VS, pure VD, passive-off, and passive-on 
suspension systems, as comparison. The five different suspensions were under harmonic excitation 
with amplitude of 1 mm and frequency of 3.5 Hz. It can be seen that the passive-off suspension 
system performs the worst, followed by the VS suspension system. The performance of the VD and 
passive-on suspension system is better than that of the VS suspension system. Obviously, the VSVD 
suspension system outperforms the other four suspension systems in reducing the acceleration of 
the car body. In order to quantify the vibration reduction performance of these five suspension 
systems, Table 6 gives the RMS values of the car body vibrations. It can be seen that the RMS 
values of the passive-on suspension, VS suspension, VD suspension and VSVD suspension are 
reduced by 54.7%, 41.6%, 56.7% and 68.8% compared with the passive suspension, respectively. 
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Figure 10. Car body acceleration under sinusoidal excitation in time domain. 

Table 6. RMS values of the car body under sinusoidal excitation. 

Body Passive-off Passive-on VS VD VSVD 

RMS-acceleration (m/𝑠𝑠2) 1.7703 0.8017 1.0338 0.7663 0.5526 

Reduce proportion  NA 54.7% 41.6% 56.7% 68.8% 

To further compare the vibration attenuation ability of the four suspension systems at different 
excitation frequencies, the vibration transmissibility of the railway vehicle under different excitation 
frequencies was tested experimentally, as shown in Figure 11. It can be seen that when the excitation 
frequency is lower than the switching frequency(𝑓𝑓0), the transmissibility of the pure VS suspension 
is identical to the passive-off suspension and the transmissibility of the VD suspension is the 



smallest. The transmissibility of the VSVD suspension is slightly higher than that of the VD 
suspension, but lower than the passive-on suspension, VS suspension and the passive-off suspension. 
At the switching frequency, the transmissibility of the VSVD suspension and pure VS suspension 
reach the maximum. When the excitation frequency is higher than 𝑓𝑓0, the transmissibility of the 
passive-on suspension, VS suspension and the VD suspension is lower than that of the passive-off 
suspension, and the transmissibility of the VSVD suspension is much lower than that of the other 
four suspension. As the excitation frequency continues to increase, the transmissibility of the pure 
VD suspension and passive-on suspension will be higher than the passive suspension. At the same 
time, the transmissibility rate of the VSVD suspension will be slightly higher than the pure VS 
suspension but will still be lower than the passive-off suspension, passive-on suspension and pure 
VD suspension. It is worth noting that the passive-on suspension is always higher than the VD 
suspension, which may be due to the excessive damping generated by the passive-on MR damper. 
Based on the above analysis, it can be concluded that the VSVD suspension possesses the best 
vibration reduction capacity, compared with passive-off suspension, passive-on suspension, pure 
VS suspension and pure VD suspension considering wide frequency range. 
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Figure 11. Transmissibility of different suspension systems. 

Case 2: evaluation under random excitation. 

After the evaluation under harmonic excitation, the performance of different suspension systems 
under random excitation was also conducted to understand the performance of the suspensions under 
real excitation. In this test, the random excitation was generated from a high-speed train model 
running on a track irregularity generated by German power spectral density functions [24-26, 33]. 
Figures 12 and 13 present the testing results, the acceleration of car body, in time domain and 
frequency domain, respectively. It can be seen that the vibration reduction ability of the five 
suspension systems under random excitation is consistent with the vibration reduction ability under 



harmonic excitation. In particular, the VSVD suspension system performs the best on vibration 
reduction, followed by pure VD suspension, pure VS suspension and passive-on suspension. The 
passive-off suspension shows the worst performance. Table 7 shows the RMS values of the five 
different suspension systems under random excitation. The RMS values of the passive-on 
suspension, VS suspension, VD suspension and VSVD suspension reduce by 4.0%, 31.3%, 44.2% 
and 55.7% compared with passive-off suspension, respectively. It can be seen that the VSVD 
suspension system performs the best compared with passive-off suspension, passive-on suspension, 
pure VS suspension and pure VD suspension systems.  
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Figure 12. Car body acceleration under random excitation in time domain. 
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Figure 13. Car body acceleration under random excitation in frequency domain. 

Table 7. RMS values of the car body under random excitation. 
Body Passive-off Passive-on VS VD VSVD 

RMS-acceleration (m/

𝑠𝑠2) 

0.7208 0.6917 0.4950 0.4024 0.3196 

Reduce proportion NA 4.0% 31.3% 44.2% 55.7% 

3.4 Discussion of the scalability and fail-safe property of the VSVD suspension system  

The lateral stiffness and damping of the actual secondary suspension system of high-speed train are 
approximately 170000  N/m  and 28000  N ∙ s/m , respectively. If the dimensions of the MRE 
isolator and MR damper in this paper are increased to a certain extent, their stiffness and damping 
can meet the actual needs of a full-scale train suspension system. Actually, some scholars [26, 48] 
have designed large scaled MRE isolators and MR dampers. For instance, Zong et al. [26] designed 
and machined a full-size MR damper for a full-scale high-speed railway vehicle; Yarra et al. [48] 
designed and fabricated a large-scale MRE isolator for highway bridges. Therefore, it is fully 
achievable to design a full-scale MRE isolator and MR damper for an actual high-speed railway 
vehicle.  

In fact, the VSVD semi-active suspension system is also facing the possibility of failure. If the MRE 
isolators fail, the VSVD suspension system will degenerate into a VD suspension system, and its 
vibration attenuating capability will be weakened; if the MR dampers fails, the VSVD suspension 
will operate as a VS suspension, and its capability to attenuate vibration will also decrease; if the 
MRE isolators and the MR dampers fail simultaneously, then the VSVD suspension system becomes 
a passive suspension system, the ride comfortable will be further reduced; however, when any of 
these failure conditions occur, the suspension system can still work passively without causing 
stability issue of high-speed train because there is no external power being added to the suspension 
system. Therefore, the versatile semi-active suspension system designed and developed in this 
research has fail-safe characteristics as well. 



4. Conclusion 

In this paper, an innovative VSVD semi-active suspension system has been successfully designed, 
prototyped, and evaluated for high-speed railway vehicles. The VSVD suspension system consists 
of four MRE isolators and two MR dampers. The performance of the MRE isolator and the MR 
damper were simulated and tested separately, with their capabilities of stiffness and damping 
controllability having been successfully verified. In order to evaluate the effect of the VSVD semi-
active suspension system on the vibration of the railway vehicle, a small-scale train was designed 
and manufactured as well as a vibration test system. A controller based on STFT and sky-hook was 
designed and implemented to facilitate the semi-active control of the system. The experimental 
evaluation for the new VSVD train suspension system was successfully carried out under harmonic 
and random excitations. The testing results show that the systemcan avoid lateral resonance of the 
car body and dissipate the vibration energy efficiently. This system performs better in improving 
ride comfort of the high-speed train compared with the pure VS suspension, pure VD suspension, 
passive-off, and passive-on suspension systems.  

Supplementary Material: a video comparing the performance of the VSVD suspension system 
and the passive suspension system on vibration control has been uploaded.  
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Appendix  

A. Design and simulation of the VS-MRE isolator 

The relationship between the storage modulus, loss modulus of the MRE material and the magnetic 
flux density (B) is shown in Figure A1. It can be seen that as the magnetic flux density increases, 
the storage modulus and loss modulus of the MRE material also increases. 
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Figure A1. The relationship between the storage modulus, loss modulus of the MRE material and 

the magnetic flux density. 

The magnetic field simulation results of the MRE isolator are shown in Figure A2 and Table A1. It 
shows that as the current increases, the magnetic flux density of the MRE layers also increase. 
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Figure A2. Magnetic flux density of the VS-MRE isolator under different currents: (a) 0 A; (b) 1 
A; (c) 2 A; (d) 3 A. 

Table A1. The magnetic field strength of VS-MRE isolator under different currents. 

𝐼𝐼𝑠𝑠 (A) 0 1 2 3 

B (T) 0.19 0.22 0.25 0.28 

B. Design and simulation of the VD-MR damper 

The relationship between the shear yield strength (𝜏𝜏𝑦𝑦)  of the MR fluid and the magnetic flux 
density (B) is shown in Figure A3. It can be seen that as the strength of the magnetic field increases, 
the shear yield strength of the MR fluid also increases. 
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Figure A3. The relationship between the shear yield strength of the MR fluid and the magnetic 
field density. 

The simulation analysis of the magnetic field of the VD-MR damper under different currents is 
conducted using COMSOL software and the results are shown in Figure A4. The magnetic flux 
density under different currents is shown in the Table A2. 

 
(a) 



 
(b) 

Figure A4. Magnetic flux density of the VD-MR damper under different currents: (a) 1 A; (b) 2 A. 

Table A2. The magnetic flux density of the VD-MR damper under different currents. 

𝐼𝐼𝑑𝑑 (A) 1 2 

B (T) 0.17 0.25 
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