68 research outputs found

    Roles of TNF-α gene polymorphisms in the occurrence and progress of SARS-Cov infection: A case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Host genetic factors may play a role in the occurrence and progress of SARS-Cov infection. This study was to investigate the relationship between tumor necrosis factor (TNF)-<it>α </it>gene polymorphisms with the occurrence of SARS-CoV infection and its role in prognosis of patients with lung interstitial fibrosis and femoral head osteonecrosis.</p> <p>Methods</p> <p>The association between genetic polymorphisms of <it>TNF-α </it>gene and susceptibility to severe acute respiratory syndromes (SARS) was conducted in a hospital-based case-control study including 75 SARS patients, 41 health care workers and 92 healthy controls. Relationships of TNF-α gene polymorphisms with interstitial lung fibrosis and femoral head osteonecrosis were carried out in two case-case studies in discharged SARS patients. PCR sequencing based typing (PCR-SBT) method was used to determine the polymorphisms of <it>TNF-α </it>gene in locus of the promoter region and univariate logistic analysis was conducted in analyzing the collected data.</p> <p>Results</p> <p>Compared to TT genotype, the CT genotype at the -204 locus was found associated with a protective effect on SARS with OR(95%<it>CI</it>) of 0.95(0.90–0.99). Also, TT genotype, CT and CC were found associated with a risk effect on femoral head necrosis with ORs(95%<it>CI</it>) of 5.33(1.39–20.45) and 5.67(2.74–11.71), respectively and the glucocorticoid adjusted OR of CT was 5.25(95%CI 1.18–23.46) and the combined (CT and CC) genotype OR was 6.0 (95%<it>CI </it>1.60–22.55) at -1031 site of <it>TNF-α </it>gene. At the same time, the -863 AC genotype was manifested as another risk effect associated with femoral head necrosis with OR(95%<it>CI</it>) of 6.42(1.53–26.88) and the adjusted OR was 8.40(95%CI 1.76–40.02) in cured SARS patients compared to CC genotype.</p> <p>Conclusion</p> <p>SNPs of <it>TNF-α </it>gene of promoter region may not associate with SARS-CoV infection. And these SNPs may not affect interstitial lung fibrosis in cured SARS patients. However, the -1031CT/CC and -863 AC genotypes may be risk factors of femoral head necrosis in discharged SARS patients.</p

    Integrin-mediated Cell Attachment Induces a PAK4-dependent Feedback Loop Regulating Cell Adhesion through Modified Integrin αvβ5 Clustering and Turnover

    Get PDF
    This article presents a novel mechanism deployed by cells to tune cell adhesion levels through the autoinhibitory regulation of integrin adhesion involving the activation of PAK4

    All-Inorganic Perovskite Solar Cells With Both High Open-Circuit Voltage and Stability

    Get PDF
    Metal halide perovskite solar cells based on all-inorganic CsPbBr3 have attracted considerable attentions recently, due to their high open-circuit voltage and good stability. However, the fabrication of CsPbBr3 film is limited by the poor solubility of cesium precursors in organic solvents by the one-step method. Here, we successfully fabricated CsPbBr3 film solar cells by employing colloid nanocrystal. The effects of technique parameters, including purification times, anneal temperatures, and spin-coating times on film morphology, optical spectra, and device performance are investigated in detail. The highest power conversion efficiency of 4.57% has been achieved based on a large open-circuit voltage of 1.45 V and a large short-circuit current of 9.41 mA cm−2. A large open-circuit voltage results from the reduced non-radiative energy loss channels and defect states while a large short-circuit current is related to the high conductivity induced by the removal of organic ligands with the increased nanocrystal electronic coupling. Furthermore, excellent stability in air is disclosed on the unencapsulated device suggesting the enormous potential for developing high open-circuit photovoltaic devices with high stability in future

    Functional Analysis of a Putative Dothistromin Toxin MFS Transporter Gene

    Get PDF
    Dothistromin is a non-host selective toxin produced by the pine needle pathogen Dothistroma septosporum. Dothistromin is not required for pathogenicity, but may have a role in competition and niche protection. To determine how D. septosporum tolerates its own toxin, a putative dothistromin transporter, DotC, was investigated. Studies with mutants lacking a functional dotC gene, overproducing DotC, or with a DotC-GFP fusion gene, did not provide conclusive evidence of a role in dothistromin efflux. The mutants revealed a major effect of DotC on dothistromin biosynthesis but were resistant to exogenous dothistromin. Intracellular localization studies suggest that compartmentalization may be important for dothistromin tolerance

    High-Figure-of-Merit Thermoelectric La-Doped A-Site-Deficient SrTiO3 Ceramics

    Get PDF
    The structure and thermoelectric (TE) properties of La-doped, A-site-deficient SrTiO3 (Sr1–3x/2LaxTiO3) ceramics sintered in air and N2/5% H2 have been investigated. Air-sintered ceramics with 0.10 ≤ x 0.50 are orthorhombic with an a–a–c+ tilt system and long-range VA ordering. x = 0.15 sintered in N2/5% H2 shows the largest dimensionless TE figure-of-merit ZT = 0.41 at 973 K reported for n-type SrTiO3-based ceramics, suggesting that the accommodation of La through formation of (VSr) coupled with reduction in N2/5% H2 represents a new protocol for the development of oxide-based thermoelectrics

    Energy storage properties in Nd doped AgNbTaO3 lead-free antiferroelectric ceramics with Nb-site vacancies

    Get PDF
    It is crucial to discover lead-free materials with ultrahigh recoverable energy density (Wrec) that can be employed in future pulse power capacitors. In this work, a high Wrec of 4.51 J/cm3 was successfully obtained in lead-free Nd-doped AgNb0.8Ta0.2O3 antiferroelectric ceramics at an applied electric field of 290 kV/cm. It is discovered that Nd doping paired with Nb-site vacancies could stabilize the antiferroelectric phase by lowering the temperatures of the M1–M2 and M2–M3 phase transitions, which leads to higher energy storage efficiency. Furthermore, Nd and Ta co-doping will contribute to the electrical homogeneity and low electrical conductivity, resulting in large breakdown strengths. Aliovalent doping in Ag-site with Nb-site vacancies serves as a novel strategy for the construction of AgNbO3-based ceramics with excellent energy storage performance

    Experimental comparison of Yb/Al/Ce and Yb/Al/P co-doped fibers on the suppression of transverse mode instability

    Get PDF
    We presented an experimental comparison of the core-composition difference on the suppression of the photodarkening and transverse mode instability effects. Two core-composition fibers, entailing Yb/Al/Ce and Yb/Al/P co-doped fibers, were fabricated by MCVD process combined with solution doping technique. The parameters of two fibers were almost the same. The PD-induced loss at equilibrium was 3.94 dB/m at 702 nm in Yb/Al/Ce fiber, while it was 0.99 dB/m in Yb/Al/P fiber. To obtain a deeper understanding of the impact of PD on laser performance, a bidirectional pumping fiber amplifier was constructed. Compared with Yb/Al/Ce co-doped fiber, the TMI thresholds of Yb/Al/P co-doped fiber were enhanced in co-pumped and counter-pumped schemes. Meanwhile, the slope efficiency in bidirectional scheme was promoted by 4%. Moreover, the transmittance at 638 nm confirmed the superior PD resistance of Yb/Al/P co-doped fiber. These experimental results pave the way for the further development of high-power fiber lasers

    Electroceramics for High-Energy Density Capacitors: Current Status and Future Perspectives

    Get PDF
    Materials exhibiting high energy/power density are currently needed to meet the growing demand of portable electronics, electric vehicles and large-scale energy storage devices. The highest energy densities are achieved for fuel cells, batteries, and supercapacitors, but conventional dielectric capacitors are receiving increased attention for pulsed power applications due to their high power density and their fast charge–discharge speed. The key to high energy density in dielectric capacitors is a large maximum but small remanent (zero in the case of linear dielectrics) polarization and a high electric breakdown strength. Polymer dielectric capacitors offer high power/energy density for applications at room temperature, but above 100 °C they are unreliable and suffer from dielectric breakdown. For high-temperature applications, therefore, dielectric ceramics are the only feasible alternative. Lead-based ceramics such as La-doped lead zirconate titanate exhibit good energy storage properties, but their toxicity raises concern over their use in consumer applications, where capacitors are exclusively lead free. Lead-free compositions with superior power density are thus required. In this paper, we introduce the fundamental principles of energy storage in dielectrics. We discuss key factors to improve energy storage properties such as the control of local structure, phase assemblage, dielectric layer thickness, microstructure, conductivity, and electrical homogeneity through the choice of base systems, dopants, and alloying additions, followed by a comprehensive review of the state-of-the-art. Finally, we comment on the future requirements for new materials in high power/energy density capacitor applications
    corecore