79 research outputs found

    Scalable structural index construction for json analytics

    Get PDF
    JavaScript Object Notation ( JSON) and its variants have gained great popularity in recent years. Unfortunately, the performance of their analytics is often dragged down by the expensive JSON parsing. To address this, recent work has shown that building bitwise indices on JSON data, called structural indices, can greatly accelerate querying. Despite its promise, the existing structural index construction does not scale well as records become larger and more complex, due to its (inherently) sequential construction process and the involvement of costly memory copies that grow as the nesting level increases. To address the above issues, this work introduces Pison – a more memory-efficient structural index constructor with supports of intra-record parallelism. First, Pison features a redesign of the bottleneck step in the existing solution. The new design is not only simpler but more memory-efficient. More importantly, Pison is able to build structural indices for a single bulky record in parallel, enabled by a group of customized parallelization techniques. Finally, Pison is also optimized for better data locality, which is especially critical in the scenario of bulky record processing. Our evaluation using real-world JSON datasets shows that Pison achieves 9.8X speedup (on average) over the existing structural index construction solution for bulky records and 4.6X speedup (on average) of end-to-end performance (indexing plus querying) over a state-of-the-art SIMD-based JSON parser on a 16-core machine

    Weak feedback assisted random fiber laser from 45°-tilted fiber Bragg grating

    Get PDF
    We have demonstrated the realization of a high-polarization random fiber laser (RFL) output based on the hybrid Raman and Erbium gain with the tailored effect provided by a 45°-tilted fiber Bragg grating (45°-TFBG), revealing an improvement in the polarization extinction ratio (PER) and achieving a PER of ~15.3 dB. The hybrid RFL system incorporating the 45°-TFBG has been systematically characterized. The random lasing wavelength can be fixed under the extremely weak feedback effect of the 45°-TFBG with reflectivity of 0.09%. In addition, numerical simulation has verified that the weak feedback can boost the random lasing emission with fixed wavelength using a power balance model, which is in good accordance with the experiment results

    Resonance modes of plasmonic nanorod metamaterials and their applications

    Get PDF
    Plasmonic nanorod metamaterials exhibit transversal and longitudinal resonance modes. It is found that the resonance intensity of the transversal modes (T-Modes) excited by the p- polarized wave is obviously larger than the intensity for the s- polarized wave at the wavelength of the transversal resonance, and the resonance intensity of the longitudinal modes (L-Modes) excited by the s- polarized wave is clearly larger than the intensity for the p- polarized wave at the longitudinal resonance wavelength, indicating a distinct polarization characteristics, which results from excitation of the different resonance modes of surface plasmons at different wavelengths. Moreover, the polarization behavior in near field regions for the different resonance modes has been demonstrated by the electric field distributions of the plasmonic nanorods based on FDTD simulation. In addition, the working wavelength of the polarizer can be tuned by the diameter and length of the silver nanorods in the visible spectral range, higher extinction ratios and lower insertion losses can be achieved based on the different resonance modes associated with the different polarizations. The polarizers will be a promising candidate for its potential applications in integration of nanophotonic devices

    Tunable replica symmetry breaking in random laser

    Get PDF
    Replica symmetry breaking (RSB) has been widely recognized as a statistical analysis approach to understand the disorder and nonlinear interactions in complex systems ranging from atoms to the cosmic scale. However, it is challenging to analyze the nonlinear optical characteristics of random laser (RL) in disordered gain medium via RSB due to the lack of a general RSB-based statistical analysis framework. In this work, we report the tunable RSB in polymer fiber RL, where the effects of temperature and different structures on RSB are investigated experimentally and theoretically. It experimentally proves that RSB in RL is not robust, and disorder and temperature are responsible for tunable RSB in RL, which contributes to the improvement of the statistical analysis framework for investigating the optical principles of RL using RSB. And the finding of the tunable RSB allows to investigate the dynamical differences for various RL systems, which broadens the directions for the use of spin-glass theory to explore the physical mechanism of RL

    Efficient and tunable liquid crystal random laser based on plasmonic-enhanced FRET

    Get PDF
    Random lasers (RLs), which possess peculiar advantages (e.g., emission and coherence tunable) over traditional lasers with optical resonators, have witnessed rapid development in the past decades. However, it is still a challenge to tune the lasing peak of an RL over a wide range. Here, a temperature-dependent Förster resonance energy transfer (FRET) RL is demonstrated in pyrromethene 597 (PM597, “donor”) and Nile blue (NB, “acceptor”) doped chiral liquid crystals. By changing the temperature that drives the liquid crystal bandgap shift, our RL device exhibits a lasing output change from 560 nm (yellow) to 700 nm (red). While the intrinsic FRET efficiency between PM597 and NB is relatively low, the red lasing is weak. By introducing gold nanorods (GNRs) into these RL devices and utilizing GNRs’ localized surface plasmon resonance (LSPR) effect, the efficiency of FRET transfer is increased by 68.9%, thereby reducing the threshold of the RL devices. By tuning the longitudinal LSPR to match the emission wavelength of NB, the best 200-fold lasing intensity enhancement is recorded. Our findings open a pathway toward realizing LSPR-enhanced FRET tunable RLs and broaden the range of their possible exploration in photonics research and technologies

    TrustStream: A Secure and Scalable Architecture for Large-Scale Internet Media Streaming

    No full text
    Abstract—To effectively address the explosive growth of multimedia applications over the Internet, a large-scale media streaming system has to fully take into account the issues of security, quality of service (QoS), scalability, and heterogeneity. However, current streaming solutions do not address all these challenges simultaneously. To address this limitation, this paper proposes a secure and high-performance streaming system called TrustStream, which combines the best features of scalable coding, content distribution network (CDN) and peer-to-peer (P2P) networks to achieve unprecedented security, scalability, heterogeneity, and certain QoS simultaneously under a unified architecture. In this architecture, raw video is encoded into two layers, namely, the base layer, which contains the most critical media content and is transmitted through a CDN-featured single-source multi-receiver (S-M) P2P network to guarantee a minimal level of quality, and the enhancement layer, which is transmitted in a pure multisource multi-receiver (M-M) P2P framework to achieve maximum scalability and bandwidth utilization. Heterogeneity is therefore addressed by delivering only the layers that a receiver is able to manage. Security is provided by combining our key distribution mechanism and key-embedding scheme under our proposed S-M P2P topology. We have implemented TrustStream system over the Internet. Deployed by ChinaCache, the largest CDN provider in China, TrustStream has broadcasted several popular live video programs over the Internet. The experimental results demonstrate the advantages and effectiveness of our architecture and system. Index Terms—Heterogeneity, QoS, scalability, security, streaming Media
    • 

    corecore