876 research outputs found

    Controlled Synthesis of Silver Nanoparticles Using Double Reductants and Its Voltammetric Characteristics Study

    Get PDF
    Constructing robust silver nanoparticles (AgNPs) with good shape and dispersibility is of particular interest in analytical applications. Herein, monodispersibility AgNPs with the average size of 20 nm have been successfully prepared via one-pot method using sodium borohydride and trisodium citrate as co-reductants. The introduction of sodium borohydride greatly accelerated the rate of nucleation, which can effectively solve the problem of broad size distribution. Both shape and dispersibility of AgNPs can be effectively adjusted by simple control of refluxing time or concentrations of the sodium borohydride. We also studied the voltammetric characteristics of the AgNPs using Ag/AgCl solid-state voltammetry. An intense and stable current peak at a low potential could be obtained, which could provide a unique advantage in analytical applications. Copyright © 2016 BCREC GROUP. All rights reserved Received: 5th November 2015; Revised: 21st January 2016; Accepted: 22nd January 2016 How to Cite: Duan, Y., Xu, Z., Jiang, X. (2016). Controlled Synthesis of Silver Nanoparticles Using Double Reductants and Its Voltammetric Characteristics Study. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1): 115-119. (doi:10.9767/bcrec.11.1.433.115-119) Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.433.115-11

    Wishart Mechanism for Differentially Private Principal Components Analysis

    Full text link
    We propose a new input perturbation mechanism for publishing a covariance matrix to achieve (ϵ,0)(\epsilon,0)-differential privacy. Our mechanism uses a Wishart distribution to generate matrix noise. In particular, We apply this mechanism to principal component analysis. Our mechanism is able to keep the positive semi-definiteness of the published covariance matrix. Thus, our approach gives rise to a general publishing framework for input perturbation of a symmetric positive semidefinite matrix. Moreover, compared with the classic Laplace mechanism, our method has better utility guarantee. To the best of our knowledge, Wishart mechanism is the best input perturbation approach for (ϵ,0)(\epsilon,0)-differentially private PCA. We also compare our work with previous exponential mechanism algorithms in the literature and provide near optimal bound while having more flexibility and less computational intractability.Comment: A full version with technical proofs. Accepted to AAAI-1

    A Collaborative Optimization Model for Ground Taxi Based on Aircraft Priority

    Get PDF
    Large hub airports have gradually become the “bottleneck” of the air transport network. To alleviate the “bottleneck” effect, optimizing the taxi scheduling is one of the solutions. This paper establishes a scheduling optimization model by introducing priority of aircraft under collaborative decision-making mechanism, and a genetic algorithm is designed to verify the scheduling model by simulating. Optimization results show that the reliability of the model and the adjusted genetic algorithm have a high efficiency. The taxiing time decreases by 2.26% when compared with an empirical method and the flights with higher priorities are assigned better taxi routes. It has great significance in reducing flight delays and cost of operation

    Tension Strength Prediction of Transverse Branch Plate-to-Rectangular Joint with Concrete Filling

    Get PDF
    This paper predicts the tension strength of Concrete-filled Branch Plate-to-Rectangular Hollow (CBPRH) joint by conducting experimental and theoretical analysis. A total of 46 X-joints with different geometric parameters were investigated, in which 4 specimens were tested under ultimate tension and 42 specimens were numerically analyzed. The joint’s strength, failure mode and load-displacement curve were obtained. Perfobond Leister Rib (PBR) was welded in part of the specimens to investigate its effect on joint’s tensile performance. It is shown that the ultimate strength of transverse CBPRH joint benefit from grouting of chord and installation of PBR. The ultimate strength of CBPRH joint with PBR is larger than the counterpart without PBR. Tension strength equations were proposed for both CBPRH joints with and without PBR by nonlinear regression. The chord axial stress reduction factor was discussed and a modified equation originated from hollow joint was recommended for CBPRH joint. Connection efficiency was presented and compared among branch plate-to-rectangular hollow (BPRH) joint, CBPRH joint and CBPRH joint with PBR

    A KINETIC STUDY ON THE MOVEMENT OF YEMAFENZONG IN TAIJIQUAN

    Get PDF
    INTRODUCTION: Taijiquan actions are required to be steady, smooth and continuous. A detailed kinetic analysis was chosen in order to provide clarification of these features. For this study, the movement of Yemafenzong was analyzed and some significant results were obtained

    Field emission from in situ-grown vertically aligned SnO2 nanowire arrays

    Get PDF
    Vertically aligned SnO2 nanowire arrays have been in situ fabricated on a silicon substrate via thermal evaporation method in the presence of a Pt catalyst. The field emission properties of the SnO2 nanowire arrays have been investigated. Low turn-on fields of 1.6 to 2.8 V/μm were obtained at anode-cathode separations of 100 to 200 μm. The current density fluctuation was lower than 5% during a 120-min stability test measured at a fixed applied electric field of 5 V/μm. The favorable field-emission performance indicates that the fabricated SnO2 nanowire arrays are promising candidates as field emitters

    Translational selection in human: more pronounced in housekeeping genes

    Get PDF
    Background: Translational selection is a ubiquitous and significant mechanism to regulate protein expression in prokaryotes and unicellular eukaryotes. Recent evidence has shown that translational selection is weakly operative in highly expressed genes in human and other vertebrates. However, it remains unclear whether translational selection acts differentially on human genes depending on their expression patterns. Results: Here we report that human housekeeping (HK) genes that are strictly defined as genes that are expressed ubiquitously and consistently in most or all tissues, are under stronger translational selection. Conclusions: These observations clearly show that translational selection is also closely associated with expression pattern. Our results suggest that human HK genes are more efficiently and/or accurately translated into proteins, which will inevitably open up a new understanding of HK genes and the regulation of gene expression. Reviewers This article was reviewed by Yuan Yuan, Baylor College of Medicine; Han Liang, University of Texas MD Anderson Cancer Center (nominated by Dr Laura Landweber) Eugene Koonin, NCBI, NLM, NIH, United States of America Sandor Pongor, International Centre for Genetic Engineering and biotechnology (ICGEB), Italy
    corecore