3 research outputs found

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    A critical role for hemolysin in Vibrio fluvialis-induced IL-1β secretion mediated by the NLRP3 inflammasome in macrophages

    Get PDF
    V. fluvialis causes human diarrhea, but the pathogenesis is not well studied. We hypothesized that V. fluvialis-secreted hemolysin (VFH) may induce IL-1β secretion through the activation of the NLRP3 inflammasome and contribute to the pathogenicity of V. fluvialis. To examine this possibility, we constructed VFH mutant and complement strains and demonstrated that V. fluvialis-induced IL-1β production and cytotoxicity in human monocytic THP-1 cells and mouse macrophages is attributed to VFH. To evaluate the role of VFH in vivo, we infected adult C57BL/6 mice intraperitoneally and suckling C57/B6 mice orally with various strains. The mice treated with108 CFU wild-type V. fluvialis or cell-free supernatant containing VFH induced significantly higher IL-1β production in peritoneal lavage fluid or in colon compared with those infected with the mutant strain, while no effect on TNF and IL-6 production was observed at day 5 or 24 h postinfection. VFH contributed to pathological changes and IL-1β release independent of colonization of V. fluvialis in the colon. VFH has no effect on the synthesis of pro-IL-1β, but rather it triggers the processing of pro-IL-1β into IL-1β. Furthermore, using deficient mouse strains, we verified that V. fluvialis-induced IL-1β is mediated through activation of caspase-1 and the NLRP3 inflammasome ex vivo. Confocal microscopy suggests that VFH contributes to cathepsin B release. Furthermore, V. fluvialis-induced IL-1β secretion requires potassium (K+) efflux and reactive oxygen species production. Our results provide new evidence for the role of VFH in the activation of the NLRP3 inflammasome and pathogenesis in response to V. fluvialis infection
    corecore