188 research outputs found

    Electroacupuncture could influence the expression of IL-1 β and NLRP3 inflammasome in hippocampus of Alzheimer's disease animal model

    Get PDF
    Background. Effective therapies for Alzheimer's disease (AD) are still being explored. Electroacupuncture with traditional Chinese medicine theory may improve spatial learning and memory abilities and glucose metabolism rates in an animal model of AD. However, the mechanism of electroacupuncture in intervention of AD is still unclear. According to recent studies of AD mechanisms, the NLRP3 inflammasome regulated the expression of IL-1β in the brain which may mediate AD related processes. Therefore, in our study, we intend to explore the possible relation between electroacupuncture and the expression of NLRP 3 inflammasome in the hippocampus of an AD animal model. Method. In this study, 7.5-month-old male senescence-accelerated mouse prone 8 (SAMP8) mice were used as an AD animal model, which were randomly divided into two groups: Alzheimer's disease model group (AD group) and electroacupuncture group (EA group). In the control paradigm, 7.5-month-old male SAMR1 mice were used as the normal control group (N group). DU20, DU26, and EX-HN3 were selected as the acupuncture points, and after a 15-day treatment of electroacupuncture, we used immunohistochemistry and Western blotting to examine the expression of IL-1β and NLRP3, ASC, and Caspase-1 in the hippocampus of the AD animal model. Results. Compared with N group, IL-1β, NLRP3, ASC, and Caspase-1 positive cells in AD group were increased, and the relative expression of all above proteins significantly increased (P < 0.01). Compared with AD group, the expression of IL-1β, NLRP3, ASC, and Caspase-1 in EA group was significantly decreased (P < 0.01). Conclusion. Electroacupuncture treatment could inhibit the inflammation reaction in the hippocampus of SAMP8 mice. What is more, the possible mechanism of electroacupuncture reduced the expression of IL-1β and NLRP3 inflammasome relative protein

    Heterologous expression of a rice \u3ci\u3emiR395\u3c/i\u3e gene in \u3ci\u3eNicotiana tabacum\u3c/i\u3e impairs sulfate homeostasis

    Get PDF
    Sulfur participates in many important mechanisms and pathways of plant development. The most common source of sulfur in soil –SO42−– is absorbed into root tissue and distributed into aerial part through vasculature system, where it is reduced into sulfite and finally sulfide within the subcellular organs such as chloroplasts and mitochondria and used for cysteine and methionine biosynthesis. MicroRNAs are involved in many regulation pathways by repressing the expression of their target genes. MiR395 family in Arabidopsis thaliana has been reported to be an important regulator involved in sulfate transport and assimilation, and a high-affinity sulphate transporter and three ATP sulfurylases (ATPS) were the target genes of AthmiR395 (Arabidopsis thaliana miR395). We have cloned a miR395 gene from rice (Oryza sativa) and studied its function in plant nutritional response. Our results indicated that in rice, transcript level of OsamiR395 (Oryza sativa miR395) increased under sulfate deficiency conditions, and the two predicted target genes of miR395 were down-regulated under the same conditions. Overexpression of OsamiR395h in tobacco impaired its sulfate homeostasis, and sulfate distribution was also slightly impacted among leaves of different ages. One sulfate transporter (SULTR) gene NtaSULTR2 was identified to be the target of miR395 in Nicotiana tobacum, which belongs to low affinity sulfate transporter group. Both miR395 and NtaSULTR2 respond to sulfate starvation in tobacco

    Heterologous expression of a rice miR395 gene in Nicotiana tabacum impairs sulfate homeostasis

    Get PDF
    Sulfur participates in many important mechanisms and pathways of plant development. The most common source of sulfur in soil –SO42−– is absorbed into root tissue and distributed into aerial part through vasculature system, where it is reduced into sulfite and finally sulfide within the subcellular organs such as chloroplasts and mitochondria and used for cysteine and methionine biosynthesis. MicroRNAs are involved in many regulation pathways by repressing the expression of their target genes. MiR395 family in Arabidopsis thaliana has been reported to be an important regulator involved in sulfate transport and assimilation, and a high-affinity sulphate transporter and three ATP sulfurylases (ATPS) were the target genes of AthmiR395 (Arabidopsis thaliana miR395). We have cloned a miR395 gene from rice (Oryza sativa) and studied its function in plant nutritional response. Our results indicated that in rice, transcript level of OsamiR395 (Oryza sativa miR395) increased under sulfate deficiency conditions, and the two predicted target genes of miR395 were down-regulated under the same conditions. Overexpression of OsamiR395h in tobacco impaired its sulfate homeostasis, and sulfate distribution was also slightly impacted among leaves of different ages. One sulfate transporter (SULTR) gene NtaSULTR2 was identified to be the target of miR395 in Nicotiana tobacum, which belongs to low affinity sulfate transporter group. Both miR395 and NtaSULTR2 respond to sulfate starvation in tobacco

    Nitrogen loading increases both algal and non-algal turbidity in subtropical shallow mesocosms: Implication for nutrient management

    Get PDF
    Excess nitrogen (N) loading in summer often boosts phytoplankton growth and increase algal turbidity. In eutrophic shallow lakes, the increased algal production may also augment the abundance of deposit-feeding tubificid worms and thereby sediment resuspension and non-algal turbidity. However, few studies have explored the effects of high N loading on this benthic process in eutrophic shallow lakes. Here, we conducted an outdoor mesocosm experiment in a summer-winter season (177 days) on the shore of subtropical Lake Taihu, China. Each mesocosm contained a 10 cm layer of lake sediment and 450 L of lake water. Nitrate was added weekly to three of the mesocosms, while another three functioned as controls. Our results showed that N addition significantly increased algal particles as water chlorophyll a (Chl-a) increased significantly following N addition. Moreover, significantly higher levels of inorganic suspended solids (ISS) were observed in the mesocosms with added N, indicating elevation of non-algal turbidity as well by the N addition. We attribute the latter to increased sediment resuspension as the abundance of tubificid worms was significantly higher in the N addition mesocosms. Accordingly, our study indicates that high N loading in subtropical shallow lakes may boost both algal and non-algal turbidity in part via benthic-pelagic coupling processes. Our results suggest that alleviation of eutrophication in shallow eutrophic lakes may require a strategic approach to adequately control both N and phosphorus

    Resource Allocation in the Cognitive Radio Network-Aided Internet of Things for the Cyber-Physical-Social System: An Efficient Jaya Algorithm

    Get PDF
    Currently, there is a growing demand for the use of communication network bandwidth for the Internet of Things (IoT) within the cyber-physical-social system (CPSS), while needing progressively more powerful technologies for using scarce spectrum resources. Then, cognitive radio networks (CRNs) as one of those important solutions mentioned above, are used to achieve IoT effectively. Generally, dynamic resource allocation plays a crucial role in the design of CRN-aided IoT systems. Aiming at this issue, orthogonal frequency division multiplexing (OFDM) has been identified as one of the successful technologies, which works with a multi-carrier parallel radio transmission strategy. In this article, through the use of swarm intelligence paradigm, a solution approach is accordingly proposed by employing an efficient Jaya algorithm, called PA-Jaya, to deal with the power allocation problem in cognitive OFDM radio networks for IoT. Because of the algorithm-specific parameter-free feature in the proposed PA-Jaya algorithm, a satisfactory computational performance could be achieved in the handling of this problem. For this optimization problem with some constraints, the simulation results show that compared with some popular algorithms, the efficiency of spectrum utilization could be further improved by using PA-Jaya algorithm with faster convergence speed, while maximizing the total transmission rate

    The fast light of CsI(Na) crystals

    Full text link
    The responds of different common alkali halide crystals to alpha-rays and gamma-rays are tested in our research. It is found that only CsI(Na) crystals have significantly different waveforms between alpha and gamma scintillations, while others have not this phenomena. It is suggested that the fast light of CsI(Na) crystals arises from the recombination of free electrons with self-trapped holes of the host crystal CsI. Self-absorption limits the emission of fast light of CsI(Tl) and NaI(Tl) crystals.Comment: 5 pages, 11 figures Submit to Chinese Physics

    Experimental Study on Damage Characteristics of Coal Samples under True Triaxial Loading and Dynamic Unloading

    Get PDF
    AbstractCoal bursts are one of the formidable hazards in underground coal mines, yet it is still not fully explored due to the complex stress environment that exists during mining. To better understand the bursting mechanism of coal under real-time mining conditions, it is necessary to develop an experimental method capable of reproducing in situ stress and loading-unloading paths of coal in in situ conditions. In this study, a self-developed true triaxial testing system was used to investigate the damage and failure characteristics of coal samples under true triaxial loading and dynamic unloading conditions. Acoustic Emission (AE) monitoring was used to capture the fracturing of the loaded coal. Passive Velocity Tomography (PVT) and Cumulative AE Energy Density (CAEED) were used to analyse damage evolution characteristics of the coal samples under true triaxial loading conditions. A high-speed camera was used to record the failure of the coal samples when the minimum principal stress σ3 was suddenly unloaded. It was found that continuous coal damage occurred primarily during the true triaxial loading period. The peak number of AE events in the coal samples increased and then dropped as σ1 levels increased. High and low wave velocity zones in the coal samples represent regenerations of the high-density zone and fracture emergence, respectively. Significant energy release zones transferred and expanded as the triaxial loading level increased. Under significant triaxial loads, the coal samples failed and were severely damaged, and the dynamic unloading of σ3 caused ejections of coal fragments at low velocities. The outcome of this study provides in-depth understanding of the failure mechanism of coal under in situ conditions
    • …
    corecore