145 research outputs found

    Bending vibration prediction of orthotropic plate with wave-based method

    Get PDF
    A novel numerical predictive approach for steady-state response of thin orthotropic plate is presented based on wave-based method (WBM) that is applied in bending vibration prediction of thin and thick plate in mid-frequency range. The wavenumber parameters for orthotropic material and the particular solution of an infinite orthotropic plate with Fourier transform are derived. The proposed method is validated by numerical examples with simply supported boundary and clamped boundary. The compared result shows that the computational accuracy and efficiency of WBM is significantly higher than element based method, which is the ability of WBM for mid-frequency problems. The predictive ability of WBM is extended to process the dynamic response of orthotropic plate

    Application of wave based method for predicting the response of coupled vibro-acoustic system with unconstrained damping layer

    Get PDF
    The Wave Based Method (WBM) is a deterministic prediction method that is computational efficiency as compared to other deterministic prediction techniques in mid-frequency problems. This paper discusses the application of WBM for predicting the dynamic displacement of plate with an unconstrained damping layer based on Kirchhoff theory. Further, the prediction of acoustic response of the coupled vibro-acoustic system with unconstrained damping is realized on the use of WBM. A numerical example is introduced, and the comparison of numerical result obtained by WBM and FEM is acquired. It is seen that the WBM is applicable for vibro-acoustic system with unconstrained damping and is expected to yield faster and more accurate predictions. The limitation of the method caused by simplify hypothesis is described in combination with modelling ways and numerical results

    Analysis of partial-body and whole-body static sitting comfort

    Get PDF
    The whole-body comfort sensation was moderately to highly correlated with local body part comfort sensation in both sitting and driving, in order to understand what exact relationship exists between them, the seating comfort evaluations under the stimulus of four body parts (i.e. backs, waist, hips and thighs) were carried out for 15 subjects separately, subjective ratings on both partial-body and whole-body comfort are derived under different conditions. Impact factor (IF) of the partial-body comfort to whole-body comfort is calculated by the linear regression method, and the main variables are obtained by the stepwise regression algorithm. The most significant local body part in influencing whole body comfort is found at the region of hips, followed by backs, waist and hips. With impact factor analysis on partial body comfort, the results show that the local comfort feeling of waist is most potential to be influenced by other body parts, while the comfort sensitivity of thighs is the lowest

    The source localization technique based on improved functional beamforming using a virtual array

    Get PDF
    Beamforming have become a popular technique to identify sound source. The most common application is conventional beamforming, but it has low resolution and requires a large number of microphones at low frequency. To overcome this problem, an improved functional beamforming method based on “virtual array” and the relative spectral matrix is introduced. Firstly, the relative complex pressures of the sound field can be acquired by “virtual array” with one scanning microphone and a fixed reference microphone. Thereby, a relative spectral matrix of the relative complex pressures measured can be obtained. Then the improved functional beamforming method with order v is developed based on the relative spectral matrix. And the resolution of the improved method can be modified by increased the number of order v. but it also can be improved by changing virtual microphones. This property allows widening the scope of this interesting beamforming method

    The improved separation method of coherent sources with two measurement surfaces based on statistically optimized near-field acoustical holography

    Get PDF
    A technique for separating coherent sources measured by two parallel arrays is proposed. The two measurement surfaces located in the opposite directions of the coherent sources. Similar to separate the aim source from background noise, this method can separate the single source from coherent sources, which makes the sound field information of single source in complex environment more accurate. Such improved separation method based on statistically optimized near-field acoustical holography, according to the sound pressure relationship between measurement surfaces and reconstruction surfaces to separate the sources, reduces the measurement data and obtains higher precision of reconstruction. The present paper uses the improved separation method to obtain the single source results from numerical simulations, gives the relative reconstruction errors with frequency from 100 Hz to 1400 Hz, and practical measurement

    Long Short-Term Memory Neural Equalizer

    Get PDF
    A trainable neural equalizer based on Long Short-Term Memory (LSTM) neural network architecture is proposed in this paper to recover the channel output signal. The current widely used solution for the transmission line signal recovering is generally realized through DFE or FFE-DFE combination. The novel learning-based equalizer is suitable for highly non-linear signal restoration thanks to its recurrent design. The effectiveness of the LSTM equalizer is shown through an ADS simulation channel signal equalization task including a quantitative and qualitative comparison with an FFE-DFE combination. The LSTM neural network shows good equalization results compared to that of the FFE-DFE combination. The advantage of a trainable LSTM equalizer lies in its ability to learn its parameters in a flexible manner, to tackle complex scenario without any hardware modification. This can reduce the equalizer implantation cost for variant transmission channels and bring additional portability in practical applications

    Modeling and Optimization of Multiple Unmanned Aerial Vehicles System Architecture Alternatives

    Get PDF
    Unmanned aerial vehicle (UAV) systems have already been used in civilian activities, although very limitedly. Confronted different types of tasks, multi UAVs usually need to be coordinated. This can be extracted as a multi UAVs system architecture problem. Based on the general system architecture problem, a specific description of the multi UAVs system architecture problem is presented. Then the corresponding optimization problem and an efficient genetic algorithm with a refined crossover operator (GA-RX) is proposed to accomplish the architecting process iteratively in the rest of this paper. The availability and effectiveness of overall method is validated using 2 simulations based on 2 different scenarios

    Common Interactions between S100A4 and S100A9 Defined by a Novel Chemical Probe.

    Get PDF
    S100A4 and S100A9 proteins have been described as playing roles in the control of tumor growth and metastasis. We show here that a chemical probe, oxyclozanide (OX), selected for inhibiting the interaction between S100A9 and the receptor for advanced glycation end-products (RAGE) interacts with both S100A9 and S100A4. Furthermore, we show that S100A9 and S100A4 interact with RAGE and TLR4; interactions that can be inhibited by OX. Hence, S100A4 and S100A9 display similar functional elements despite their primary sequence diversity. This was further confirmed by showing that S100A4 and S100A9 dimerize both in vitro and in vivo. All of these interactions required levels of Zn(++) that are found in the extracellular space but not intracellularly. Interestingly, S100A4 and S100A9 are expressed by distinct CD11b(+) subpopulations both in healthy animals and in animals with either inflammatory disease or tumor burden. The functions of S100A9 and S100A4 described in this paper, including heterodimerization, may therefore reflect S100A9 and S100A4 that are released into the extra-cellular milieu
    corecore