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Unmanned aerial vehicle (UAV) systems have already been used in civilian activities, although very limitedly. Confronted different
types of tasks,multi UAVs usually need to be coordinated.This can be extracted as amulti UAVs system architecture problem. Based
on the general system architecture problem, a specific description of themulti UAVs system architecture problem is presented.Then
the corresponding optimization problem and an efficient genetic algorithm with a refined crossover operator (GA-RX) is proposed
to accomplish the architecting process iteratively in the rest of this paper. The availability and effectiveness of overall method is
validated using 2 simulations based on 2 different scenarios.

1. Introduction

Unmanned aerial vehicle (UAV) systems, which were devel-
oped for military purpose originally, are currently in limited
use for public servicemissionsworldwide.UAVsystems come
in all sizes, and although most are for military applications,
they have already been used in civilian activities. They can
operate in areas where it would be irresponsible to expect
pilots to fly, for example, low level, night flights over the
Arctic Ocean, flights over regions where there is low level
strife. Here, the disaster management supported by UAVs
is taken for demonstrating. UAV systems have potential
to augment the effectiveness of disaster response dramat-
ically based on their excellent performance in dull, dirty,
or dangerous environment. Disaster relief and emergency
response missions could be a fifth category in the civil uses of
UAVs systems [1]; they are expected to be “force multipliers”
in disaster response just as in achieving military missions.
Disaster response consists of various types of tasks, that is,
warning/evacuation, search and rescue, providing immediate
assistance, assessing damage, continuing assistance, and the
immediate restoration of infrastructure. Huge difference
exists between different tasks in the degree of urgency and
difficulty. The effectiveness of disaster response depends on
the coordination of these tasks.

Studies on UAVs for disaster monitoring have been
conducted by several researchers [2, 3]. Also, some problems
related to multiplatforms (UAVs included) collaborative dis-
asters monitoring have conducted by BAI GuoQing [4, 5].

In this paper, we focus on the modeling and optimization
of multiple UAVs system architecture to maximize mission
performance. Driven by the tasks to be conducted in given
mission, the UAVs system architecture model can be treated
as a solution of corresponding task assignment problem.

2. Architecture and Architecting

The first researcher to formalize the concept of “systems
architecting” is Rechtin, and his book with Maier is the best
introduction to this field [6]. More formally, Crawley defines
architecture as “an abstract description of the entities of a
system and the relationships between those entities.” How-
ever, a more precise definition is given by Crawley in MIT
Engineering SystemsDivision as follows: “the embodiment of
a concept: the allocation of physical/informational function
to elements of form, and the definition of interfaces among
the elements and with the surrounding context [7].” This
precise definition can be expressed briefly as function-to-
form mapping where the function executed by the different

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 189679, 8 pages
http://dx.doi.org/10.1155/2014/189679

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194622697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 The Scientific World Journal

1
3

2

4 5

6 7

1

3

2

4

5

7

6
?

A

B

C

D

E

F

G

Figure 1: System architecture process.

subsystems and the form is the relationship among them.
The allocation of physical or informational elements of
function into elements of form is one of the earliest and
most important architectural decisions that have to be made.
The concept of system architecture can be illustrated as in
Figure 1.There are 7 different subsystems for architecting, and
every subsystem can execute certain function. It is supposed
that there are two alternatives to be selected. The function-
to-form mapping of left alternative is A: 1, 2, and 3, B: 4, 5,
C: 6, 7. Function 1, function 2, and function 3 are mapping
to form A; function 4 and function 5 are mapping to form
B; function 6 and function 7 are mapping to form C. The
mission can be accomplished by the combination of form A,
form B, and formC.The right alternative is another function-
to-form mapping which can also accomplish the mission.
Then, the problem is which alternative to be selected as the
ultimate architecture. The selecting process is usually based
on the mission performance.This is the essence of the system
architecting.

The system architecture can be comprehended in two
aspects. Firstly, it should tell us “what the system is” or the set
of tangible elements that the system is composed of. Secondly,
it should tell us “what the system does” in order to provide
value to the stakeholders. System architecting is the process
of creating system architecture.

The system architecting process can essentially be seen
as a decision making process where the decisions to make
concern the description of the entities of the system, as well
as the relationships between them [8]. This decision making
process can be supported by efficient optimization method
proposed later in this paper.

3. Multiple UAVs System Architecture

Based on the basic definition of system architecture, the
description of multiple UAVs system architecture can be
given.The process model for multiple UAVs system architec-
ture is presented in Figure 2.

It can be extracted from the basic system architecture
theory that the first step is identifying the stakeholder needs.
The architecture of multiple UAVs system is designed to
accomplish the value delivery loop based on the stakeholder
needs, which is maximizing the mission performance given.

Stakeholder needs

General objectives 

Specific objectives 

Tasks needed 
Tasks and UAVs
data products

The assignment 
plan 

The executive 
details

The ultimate 
architecture

Satisfy

Satisfy

Satisfy

Figure 2: Architecture model for multi-UAVs system.

Then, the second step is identifying how the multi-UAVs
maximize the mission performance. This is the issue in the
mission level. The embodiment of this is maximizing the
probability of accomplishing all the tasks necessary effec-
tively. In order to reach this goal, the suitable UAVs should
be chosen firstly. This answers “what the system is.”Then, the
UAVs and the tasks are modelled as an asymmetric bipartite
graph, which represents the assignment relationship between
UAVs and tasks. The selecting and assignment process is
the embodiment of system architecting in the context of
maximizing the mission performance.

What is the architect trying to achieve? What makes an
architecture “good?” To answer this question, a process is
needed for selecting architectures that are not only capable
of accomplishing the demand tasks but are also effective
in terms of their overall value acquired. The quality of the
proposed architecture is evaluated according to some criteria,
which is the overall value acquired by the UAVs through
conducting the tasks in this paper. It is inevitable for architect
that the selecting and assigning should be done iteratively.
The system architecting problem of multi-UAVs can be
formulated as a constrained, combinatorial optimization
problem. For example, these problems can be formulated
as generalized assignment problems, quadratic assignment
problems, or their expansions. As excellent population-based
search algorithms, evolutionary algorithms (e.g., genetic
algorithms, particle swarm optimization) can be chosen to
solve these multi-UAVs system architecting problems. The
general process of solving multi-UAVs system architecting
problems employing evolutionary algorithms is presented in
Figure 3. An optimization problem and an efficient genetic
algorithm with a refined crossover operator (GA-RX) are
proposed to accomplish the architecting process iteratively in
the rest of this paper.
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Figure 3: The general evolutionary process.

4. Problem Formulation

4.1. Notations

𝑀: Number of available UAVs

𝑉 = {𝑈
1
, 𝑈
2
, . . . , 𝑈

𝑀
}: Set of all available UAVs

𝑁: Number of tasks needed in mission

𝑇 = {𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑁
}: Set of all tasks

𝐾: Number of assets needed to be protected

𝐺
𝑘
: The set of tasks aimed for asset 𝑘, 𝑘 = 1, 2, . . . , 𝐾

𝑛
𝑘
: Number of tasks aimed for asset 𝑘, (i.e., |𝐺

𝑘
|), 𝑘 =

1, 2, . . . , 𝐾

𝑊 = [𝑊
1
,𝑊
2
, . . . ,𝑊

𝐾
]: Value vector of assets, where

𝑊
𝑘
is the value of asset 𝑘

𝑃 = [𝑝
𝑖𝑗
]
𝑁×𝑀

: The probability that UAV 𝑗 accomplish
task 𝑖

𝜋
𝑖
: The damage probability of the asset if the required

tasks are not accomplished.

The decision variables will be denoted by 𝑋 = [𝑥
𝑖𝑗
]
𝑁×𝑀

;

𝑥
𝑖𝑗

=

{

{

{

1 if UAV 𝑗 assigned to task 𝑖

0 otherwise.
(1)

4.2. Objective Function and Constraints

Objective Function. The probability of that task 𝑖 is accom-
plished is given as follows:

1 −

𝑀

∏

𝑗=1

(1 − 𝑝
𝑖𝑗
)
𝑥𝑖𝑗

. (2)

Therefore, the probability that asset 𝑘 is protected success-
fully, that is, without being attacked by all targets, is given by

∏

𝑖∈𝐺𝑘

[

[

1 − 𝜋
𝑖

𝑀

∏

𝑗=1

(1 − 𝑝
𝑖𝑗
)
𝑥𝑖𝑗]

]

. (3)

Hence, the objective function is given by

𝐽 =

𝐾

∑

𝑘=1

𝑊
𝑘
∏

𝑖∈𝐺𝑘

[

[

1 − 𝜋
𝑖

𝑀

∏

𝑗=1

(1 − 𝑝
𝑖𝑗
)
𝑥𝑖𝑗]

]

. (4)

Constraints. The constraint in this problem is due to the fact
that each UAV can be assigned to only one target because
of the emergent property of the mission. The constraint is
represented as follows:

𝑁

∑

𝑖=1

𝑥
𝑖𝑗

= 1, 𝑗 = 1, 2, . . . ,𝑀. (5)

4.3. Overall Problem Representation. Themultiple UAVs sys-
tem architecting problem can be stated as

Max
{𝑥𝑖𝑗∈{0,1}}

𝐽 =

𝐾

∑

𝑘=1

𝑊
𝑘
∏

𝑖∈𝐺𝑘

[

[

1 − 𝜋
𝑖

𝑀

∏

𝑗=1

(1 − 𝑝
𝑖𝑗
)
𝑥𝑖𝑗]

]

(6)

subject to ∑
𝑁

𝑖=1
𝑥
𝑖𝑗

= 1, 𝑗 = 1, 2, . . . ,𝑀.

5. Optimization Algorithm Design

5.1. General GA. Evolutionary algorithms (EAs) inspired by
Darwinian principles of evolution are global stochastic search
methods simulating the evolution process in nature. Among
the EAs, GAs are most popular. GAs were introduced by
Holland [9] and were applied to many practical problems
by Goldberg [10]. GAs are of high availability, because
the properties such as differentiability and continuity are
not necessary. On the other hand, GAs are population-
based optimization methods, which guarantee GAs effective
approaches in searching for the global optimum.The general
GA is shown in Pseudocode 1, where𝑃(𝑡) and𝐶(𝑡) are parents
and offspring in generation 𝑡.

5.2. Population Representation (Encoding) and Initialization.
Genetic algorithmsworkwith a number of potential solutions
that are defined by a genotype representation according
to the real solutions for certain problem. Encoding is the
process of transformation fromphenotype (in solution space)
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Procedure GA:
begin

𝑡 = 0;
initialize 𝑃(𝑡);
evaluate 𝑃(𝑡);
while not finished do

begin
𝑡 = 𝑡 + 1;
select 𝑃(𝑡) from 𝑃(𝑡 − 1);
reproduce pairs in 𝑃(𝑡);
evaluate 𝑃(𝑡);

end
end.

Pseudocode 1: Pseudocode for GA.

to genotype (in search space handled by GAs), decoding
vice versa. The notion of real-valued genetic algorithms has
been offered but is really a misnomer because it does not
really represent the building block theory that was proposed
by John Henry Holland in the 1970s. So we chose binary
representation in this paper.

From the formulation given in problem formulation, we
can extract the original formulation of the solution as follows:

Solution = (

𝑥
11

⋅ ⋅ ⋅ 𝑥
1𝑀

... d
...

𝑥
𝑁1

⋅ ⋅ ⋅ 𝑥
𝑁𝑀

),

𝑥
𝑖𝑗

= {
1 if UAV 𝑗 assigned to task 𝑖

0 otherwise.

(7)

In any column (𝑥
1𝑗

, 𝑥
2𝑗

, . . . , 𝑥
𝑁𝑗

)
𝑇, the sole task assigned

to the UAV 𝑗 can be identified. The index of task assigned to
UAV 𝑗 is the 𝑗th bit of the interim integer string. Then, every
bit of the interim integer string is transformed to its binary
form. An example is given as follows.

Assume there are 5 UAVs and 3 tasks, and the original
matrix 𝑋 is

(

1 0 1 0 0

0 1 0 0 1

0 0 0 1 0

) . (8)

Its interim integer string is (1, 2, 1, 3, 2). Then the binary
form which is called genotype is (01 10 01 11 10).

The merit of this representation is embodied as follows.
(1) The constraint is eliminated, so it need not be handled
additionally. (2) According to schema theory, binary repre-
sentation is more beneficial to the growth of useful schemata,
which in turn enhances convergence rates.

Having decided on the representation, the first step in
the GA-RX is to create an initial population. We will adopt
the method which is most usually achieved by generating
the required number of individuals using a random number
generator that uniformly distributes numbers in the desired
range.

5.3. Genetic Operators Setup. In Pseudocode 1, it can be seen
that the genetic operators included in GAs are Selection
Operator, Crossover Operator, and Mutation Operator. In
this paper, a refined crossover operator is proposed, while for
the other genetic operators, the setup is as follows.

The desire for efficient selection methods is motivated by
the need to maintain GAs overall time complexity. In this
paper, the classical roulette wheel selection method based
operator is selected because it provides zero bias and the
spread is lower bounded.

In natural evolution, mutation is a random process where
one allele of a gene is replaced by another to produce a new
genetic structure. Binarymutation operator is selected for the
reason that binary representation is selected.

A refined crossover operator will be introduced in the
next section.

6. A Refined Crossover Operator

6.1. Origination. Crossover is the basic operator for pro-
ducing new individuals in the GAs, and it is the most
significant factor as for the effectiveness of certain GA. In
traditional GAs, the crossover operator is executed between
two individuals randomly extracted from 𝑃(𝑡), who are
selected from 𝑃(𝑡 − 1) using the selection operator (roulette
wheel selection method based operator in this paper). More
research is focused on the pattern of crossover, while little
concerns the rules guiding the selecting of target individual
to be operated.

Like its counterpart (marriage) in nature, in the process of
crossover, an individual in the current 𝑃(𝑡) always tends to be
paired with another individual which is good enough. “Good
enough” means the fitness of the partner selected is large
enough. It would be best if its partner’s fitness is the largest.
This trend in the crossover can be easily comprehended using
the mate selection of human.

6.2. Modeling and the Result Rule. Suppose that an individual
in the current𝑃(𝑡) observes a sequence of 𝑛 individuals whose
fitness values are known. This individual who observes is the
so-called administrator. The administrator has two choices
for each randomly selected individual: accept or reject for
crossover (like marriage). Once an individual is selected, the
crossover will be executed between these two individuals,
and the next individual as the individual that will be selected
arrives randomly, the administrator can rank the applicant
among all the individuals that arrived so far. However, please
note that the administrator cannot select an individual that
has not arrived yet even this individual has a high fitness.The
question for the administrator individual is to discover the
rule which can maximize the probability of selecting the best
individual to execute crossover. This optimal policy problem
has a strikingly elegant solution given by Vanderbei [11]. The
optimal policy for the problem is a stopping rule. Under it,
the administrator individual rejects the first 𝑟 − 1 applicants
(let applicant 𝑀 be the best applicant among these 𝑟 − 1

applicants) and then selects the first subsequent applicant that
is better than applicant 𝑀. It can be shown that the optimal
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Figure 4: Simulation results.

strategy lies in this class of strategies. For an arbitrary cutoff
𝑟, the probability that the best applicant is selected is

𝑃 (𝑘) =

𝑁

∑

𝑖=𝑘+1

1

𝑁
×

𝑘

𝑖 − 1
=

𝑘

𝑁

𝑁

∑

𝑖=𝑘+1

1

𝑖 − 1
. (9)

Letting 𝑛 tend to infinity, the limit of 𝑟/𝑛 is denoted
by 𝑥, and using 𝑡 for 𝑖/𝑛 and 𝑑𝑡 for 1/𝑛, the sum can be
approximated by the integral:

𝑃 (𝑘) = 𝑥∫

1

𝑥

1

𝑡
𝑑𝑡 = −𝑥 ln𝑥. (10)

Taking the differential coefficient of 𝑃(𝑥) with respect to
𝑥, setting it to 0. By solving this equation, we can find that
the optimal 𝑥 is equal to 1/𝑒. Thus, the optimal cutoff tends
to 𝑛/𝑒 (𝑒 ≈ 2.718) as 𝑛 increases, and the best applicant is
selected with probability 1/𝑒 (37%).

6.3. Monte Carlo Simulation of the 1/𝑒-Law. Monte Carlo
experiment can be used to verify the effectiveness of the 1/𝑒-
law. The parameter settings of the Monte Carlo experiment
are as follows.

(1) The size of the applicant pool for selection, 𝑛 is set to
20.

(2) Computational times required are set to 10000.

The result is shown in Figure 4; the horizontal axis is the
fitness ranking of individuals (as applicants in 1/𝑒-lawmodel)
and the vertical axis is the statistical times (the total is 10000).

It can be seen that the best individual is selected with
nearly 4000 times out of 10000 times, far more than other
individuals. This shows the effectiveness of the 1/𝑒-law in
selection of best individual.

6.4. Refined Crossover Operator Based on 1/𝑒-Law. Crossover
operators used by the traditional genetic algorithm are com-
mon in selecting strategy. The parents are selected randomly,

Procedure of RX operator:
Input: 𝑃(𝑡)

Output: 𝐶(𝑡)

Parameters:
(1) NIND—Number of individuals
(2) 𝑛—the number of individuals expected arriving
Begin:

Rank 𝑃(𝑡) based on fitness;
for 𝑝 ∈ 𝑃(𝑡):
if not finished:

for 𝑞 ∈ 𝑃 (𝑡) and 𝑞 ̸= 𝑝:
generate a rand number in
1∼NIND;
if the rand number less than 𝑛/𝑒:

mark the largest fitness as 𝑀;
else:

if fitness of 𝑞 is larger than 𝑀:
Crossover generates children;
Set the child owning larger
fitness as 𝑝

󸀠;
break;

Add 𝑝
󸀠to 𝐶(𝑡);

End

Pseudocode 2: Pseudocode for RX Operator.

while in our novel algorithm an effective selecting strategy
based on the 1/𝑒-law is employed by the refined crossover
operator. Firstly, the individuals produced by the selection
process are ranked depending on their fitness values. Then,
letting the first individual from the ranked population be the
administrator, a sequence of up to 𝑛 individuals is chosen
randomly. The administrator rejects the first 37% individuals
(let individual 𝑋 be the best individual among these 37%
individuals, whose fitness value is the largest in the first 37%
individuals) and then selects the first subsequent individual
that is better than individual 𝑋.

The two mating chromosomes, owned by the admin-
istrator individual and selected individual, are cut once at
corresponding points and the sections after the cuts were
exchanged. Here, a cross-site or crossover point is selected
randomly along the length of the mated strings and bits
next to the cross-sites are exchanged. A better solution
can be obtained by combining good parents. A random
recombination usually produce low quality solutions.

The pseudocode of RX operator is listed in Pseudocode 2,
and the overall process of GA-RX is presented in Figure 5.

7. Simulations, Results, and Analysis

Two groups of simulations are executed, and two scenarios
are considered.

7.1. Case Description. Two different scenarios are considered.
The first scenario considers a simple situation which contains
20 UAVs, 16 tasks, and 10 assets (which are to be protected).
The second scenario consists of data for 100 UAVs, 80
tasks, and 60 assets to be protected, which is considered as
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Overall GA-RX

Generate an initial population randomly

Calculate the fitness value of each 
individual in the population

The convergence
condition is met

Perform selection operator on current 
population

Refined crossover operator

Rank population(t) based on fitness 

Let p be the first individual of population

Mark the largest fitness as M
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less than n/e
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No
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p and q are 
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Add p󳰀 to C(t)
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Figure 5: The overall process of GA-RX.
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Figure 6: Scenario 1.

a complicated case formost of the state-of-the-art algorithms.
For both scenarios, the following parameters are randomly
generated, which are the value vector of assets (𝑊), the
probability matrix (𝑃 = [𝑝

𝑖𝑗
]
𝑁×𝑀

), and the damage proba-
bility (𝜋

𝑖
). Both scenarios can be illustrated by Figure 6. For

Scenario 1, the search space is 2
4×20. A general evolutionary

algorithm (e.g., GA, PSO, ACO, and DE) is sufficient to cope
with such problems. However, for Scenario 2, the search
space is significantly increased, that is, 27×100. Intuitively, an

advanced genetic operator is required such that the algorithm
effectiveness and search efficiency can be improved when
solving this system architecting problem.

The main reason for generating these data randomly is
as follows: to the best of the authors’ knowledge, there is no
benchmark problem in the domain of system architecture
optimization. Different studies employ different scenarios,
objectives, and function formulations. In order to avoid bias
on selected datasets and verify the effectiveness and efficiency
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Figure 7: Typical results of simulation 2.

Table 1: The 𝑡-test result of Simulation 2.

Scenario
Algorithm

GA CLPSO DE ACO GA-RX
Mean/STD Mean/STD Mean/STD Mean/STD Mean/STD

Scenario 1 15.2/1.1 17.9/1.2 15.1/0.9 16.9/1.2 18.9/0.8
Scenario 2 35.2/8.7 39.0/5.1 33.6/4.7 35.9/6.8 47.7/3.5

of our proposed algorithm, that is, GA-RX, it is better to
generate data randomly rather than choose a fixed scenario.

The performance of GA-RX is evaluated in two different
ways.The first simulation is based on Scenario 1. For this case,
a performance threshold is set, and the GA-RX is executed
only for 50 generations (as previously mentioned, this is a
simple example; 50 generations are sufficient for obtaining
good results). This simulation is conducted using 100 groups
of random data. An indicator, expressed as a percentage
value, measures the number of times when the threshold
performance is achieved over the total number of executions.
Obviously, the larger the indicator is, the better the algorithm
performance is. The second simulation is based on both
scenarios. The GA-RX algorithm is compared with classical
GA and three other state-of-the-art intelligent optimization
algorithms, including CLPSO [12], DE [13], and ACO [14].
The relationship among these tasks is randomly identified in
both scenarios. However, the employed data is identical for
all simulations under the same scenario (which is to make a
fair comparison). All simulations are performed 30 times.The
performance of different algorithms is statistically compared
using the 𝑡-test with a significance level of 95%.

7.2. Results

Simulation 1. For the 100 groups of data randomly generated,
the times of the threshold performance met are 93, and the
percentage is 93% (The threshold is 18).

Simulation 2. For simulation 2, the 𝑡-test results are in
Table 1.

In the 30 times of each scenario, two typical simulation
results are presented in Figure 7.

7.3. Analysis. Firstly, it can be observed that GA-RX implies
a faster convergence rate than the other for algorithms in
both scenarios.This is because the refined crossover operator
derived from the 1/𝑒-law can preserve the beneficial aspects
of candidate solution while it does not destroy the diversity
in each generation.

Secondly, Out of the five algorithms used for comparison,
GA-RX is statistically better than all of the other algorithms.
It can be observed that GA-RX can perform better than other
algorithms in both scenarios. It results from the accumulation
of refined crossover operator.
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8. Conclusion

In this paper, the modeling and optimization of multi-
UAVs system architecture alternatives have been studied.
The multi-UAVs system architecture problem was presented
as a constrained combinatorial optimization problem in
Section 4. An enhanced genetic algorithm which employs a
refined crossover operator (GA-RX) is proposed and applied
to accomplish the architecting process of multiple UAVs
system in Sections 5 and 6.The simulation results in Section 7
suggest that the GA-RX algorithm is available and effective
in solving the multiple UAVs system architecture problem as
it can preserve the beneficial aspects of candidate solution
without degrading the diversity in each generation.

With respect to the future study, it is valuable to consider
multiple objectives on the system architecture optimization
[15]. Correspondingly, effective algorithms for solving these
multi-objective optimization problems are expected to be
designed [16, 17].
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