522 research outputs found

    Modulation of the thermodynamic, kinetic and magnetic properties of the hydrogen monomer on graphene by charge doping

    Full text link
    The thermodynamic, kinetic and magnetic properties of the hydrogen monomer on doped graphene layers were studied by ab initio simulations. Electron doping was found to heighten the diffusion potential barrier, while hole doping lowers it. However, both kinds of dopings heighten the desorption potential barrier. The underlying mechanism was revealed by investigating the effect of doping on the bond strength of graphene and on the electron transfer and the coulomb interaction between the hydrogen monomer and graphene. The kinetic properties of H and D monomers on doped graphene layers during both the annealing process (annealing time t0=t_0 =300 s) and the constant-rate heating process (heating rate α=\alpha =1.0 K/s) were simulated. Both electron and hole dopings were found to generally increase the desorption temperatures of hydrogen monomers. Electron doping was found to prevent the diffusion of hydrogen monomers, while the hole doping enhances their diffusion. Macroscopic diffusion of hydrogen monomers on graphene can be achieved when the doping-hole density reaches 5.0×10135.0\times10^{13} cm2^{-2}. The magnetic moment and exchange splitting were found to be reduced by both electron and hole dopings, which was explained by a simple exchange model. The study in this report can further enhance the understanding of the interaction between hydrogen and graphene and is expected to be helpful in the design of hydrogenated-graphene-based devices.Comment: Submitte

    Strong quantum fluctuation of vortices in the new superconductor MgB2MgB_2

    Full text link
    By using transport and magnetic measurement, the upper critical field Hc2(T)H_{c2}(T) and the irreversibility line Hirr(T)H_{irr}(T) has been determined. A big separation between Hc2(0)H_{c2}(0) and Hirr(0)H_{irr}(0) has been found showing the existence of a quantum vortex liquid state induced by quantum fluctuation of vortices in the new superconductor MgB2MgB_2. Further investigation on the magnetic relaxation shows that both the quantum tunneling and the thermally activated flux creep weakly depends on temperature. But when the melting field HirrH_{irr} is approached, a drastic rising of the relaxation rate is observed. This may imply that the melting of the vortex matter at a finite temperature is also induced by the quantum fluctuation of vortices.Comment: 4 pages, 4 figure

    Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory

    Full text link
    Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by Duan-Lukin-Cirac-Zoller protocol, many improved quantum-repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multi-photons (multi-photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 11, 2020 and 100100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devicesComment: Published version, including supplementary materia

    The thermodynamic and kinetic properties of hydrogen dimers on graphene

    Full text link
    The thermodynamic and kinetic properties of hydrogen adatoms on graphene are important to the materials and devices based on hydrogenated graphene. Hydrogen dimers on graphene with coverages varying from 0.040 to 0.111 ML (1.0 ML =3.8×1015= 3.8\times10^{15}cm2^{-2}) were considered in this report. The thermodynamic and kinetic properties of H, D and T dimers were studied by ab initio simulations. The vibrational zero-point energy corrections were found to be not negligible in kinetics, varying from 0.038 (0.028, 0.017) to 0.257 (0.187, 0.157) eV for H (D, T) dimers. The isotope effect exhibits as that the kinetic mobility of a hydrogen dimer decreases with increasing the hydrogen mass. The simulated thermal desorption spectra with the heating rate α=1.0\alpha = 1.0 K/s were quite close to experimental measurements. The effect of the interaction between hydrogen dimers on their thermodynamic and kinetic properties were analyzed in detail.Comment: submitted to Surface Scienc

    The LAMOST Survey of Background Quasars in the Vicinity of the Andromeda and Triangulum Galaxies -- II. Results from the Commissioning Observations and the Pilot Surveys

    Full text link
    We present new quasars discovered in the vicinity of the Andromeda and Triangulum galaxies with the LAMOST during the 2010 and 2011 observational seasons. Quasar candidates are selected based on the available SDSS, KPNO 4 m telescope, XSTPS optical, and WISE near infrared photometric data. We present 509 new quasars discovered in a stripe of ~135 sq. deg from M31 to M33 along the Giant Stellar Stream in the 2011 pilot survey datasets, and also 17 new quasars discovered in an area of ~100 sq. deg that covers the central region and the southeastern halo of M31 in the 2010 commissioning datasets. These 526 new quasars have i magnitudes ranging from 15.5 to 20.0, redshifts from 0.1 to 3.2. They represent a significant increase of the number of identified quasars in the vicinity of M31 and M33. There are now 26, 62 and 139 known quasars in this region of the sky with i magnitudes brighter than 17.0, 17.5 and 18.0 respectively, of which 5, 20 and 75 are newly-discovered. These bright quasars provide an invaluable collection with which to probe the kinematics and chemistry of the ISM/IGM in the Local Group of galaxies. A total of 93 quasars are now known with locations within 2.5 deg of M31, of which 73 are newly discovered. Tens of quasars are now known to be located behind the Giant Stellar Stream, and hundreds behind the extended halo and its associated substructures of M31. The much enlarged sample of known quasars in the vicinity of M31 and M33 can potentially be utilized to construct a perfect astrometric reference frame to measure the minute PMs of M31 and M33, along with the PMs of substructures associated with the Local Group of galaxies. Those PMs are some of the most fundamental properties of the Local Group.Comment: 26 pages, 6 figures, AJ accepte

    A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms

    Get PDF
    We describe a genetic variation map for the chicken genome containing 2.8 million single-nucleotide polymorphisms ( SNPs). This map is based on a comparison of the sequences of three domestic chicken breeds ( a broiler, a layer and a Chinese silkie) with that of their wild ancestor, red jungle fowl. Subsequent experiments indicate that at least 90% of the variant sites are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about five SNPs per kilobase for almost every possible comparison between red jungle fowl and domestic lines, between two different domestic lines, and within domestic lines - in contrast to the notion that domestic animals are highly inbred relative to their wild ancestors. In fact, most of the SNPs originated before domestication, and there is little evidence of selective sweeps for adaptive alleles on length scales greater than 100 kilobases

    Ab initio simulations of the kinetic properties of the hydrogen monomer on graphene

    Full text link
    The understanding of the kinetic properties of hydrogen (isotopes) adatoms on graphene is important in many fields. The kinetic properties of hydrogen-isotope (H, D and T) monomers were simulated using a composite method consisting of density functional theory, density functional perturbation theory and harmonic transition state theory. The kinetic changes of the magnetic property and the aromatic π\pi bond of the hydrogenated graphene during the desorption and diffusion of the hydrogen monomer was discussed. The vibrational zero-point energy corrections in the activation energies were found to be significant, ranging from 0.072 to 0.205 eV. The results obtained from quantum-mechanically modified harmonic transition state theory were compared with the ones obtained from classical-limit harmonic transition state theory over a wide temperature range. The phonon spectra of hydrogenated graphene were used to closely explain the (reversed) isotope effects in the prefactor, activation energy and jump frequency of the hydrogen monomer. The kinetic properties of the hydrogen-isotope monomers were simulated under conditions of annealing for 10 minutes and of heating at a constant rate (1.0 K/s). The isotope effect was observed; that is, a hydrogen monomer of lower mass is desorbed and diffuses more easily (with lower activation energies). The results presented herein are very similar to other reported experimental observations. This study of the kinetic properties of the hydrogen monomer and many other involved implicit mechanisms provides a better understanding of the interaction between hydrogen and graphene.Comment: Accepted by J. Phys. Chem.
    corecore