516 research outputs found

    Study on the Application of Biological Tactile in Fast Meat Freshness Detection

    Get PDF
    The author aimed to explore the application of biological tactile in fast non-destructive meat freshness detection. Used WDW-20 electronic universal testing machine, surveyed chicken, pork and beef the pressure characteristic curves, analysed respectively the relationship between the pressure characteristic curve parameters and the meat freshness. The author also analysed the relationship between the shape of pressure characteristic curve and the meat freshness. The results indicated that in the meal pressure characteristic curve, the curve shape and a number of mechanical parameters could reflect its freshness. Also, different types meat had different structures led them to the different mechanical properties; different types meat characteristic curves, the meat pressure characteristic curve shape and parameters reflected their fresh meat differently. Biological tactile can evaluate meat freshness in a few seconds. This is a promising, economic, simple and practicable way of fast meat freshness detection. Key words: Biological tactile; TVBN; pressure Characteristic curv

    Light Harvesting Mechanism of Photosystem II in Photosynthesis:

    Get PDF
    As one of the most important chemical reactions on the earth, the photosynthetic reaction has gained much attention. For example, foliage and algae possess superior abilities to harvest luminous energy from sunlight in photosynthetic reactions by capturing lights with the light-harvesting complex (LHC) and transferring the energy from LHC to the reaction center (RC) in Photosystem II (PSII), to realize the continuous and efficient transformation from luminous energy to chemistry energy. In this article, the progresses in the studies on the crystal structure of PSII, the energy and electron transfer mechanism, and artificial simulation on photo-induced electron transfer are reviewed. Additionally, the initiating mechanism of hydrogen-abstraction photoinitiators, and the inspiration of the principles and mechanisms of photo-induced electron transfer in macromolecular photoinitiators were also discussed. It is believed that properly choosing covalent chains of appropriate types and length as the bridge between electron donor and electron acceptor is crucial for improving the initiating efficiency of photoinitiators. Keywords: photosynthesis; photosystem; light harvesting; photoinitiator; electron transfe

    Inhibition of GALR1 in PFC Alleviates Depressive-Like Behaviors in Postpartum Depression Rat Model by Upregulating CREB-BNDF and 5-HT Levels

    Get PDF
    Estrogen (E2) withdrawal is a core pathology mechanism for postpartum depression (PPD). Galanin (GAL), an estrogen-inducible neuropeptide has also been reported to be associated with depression. However, it still remains unclear which GAL receptors (GALRs) are involved in PPD pathologic process. In the present study, we discovered that the expression of GALR1, rather than GALR2/3, was upregulated with a region-specific pattern in the prefrontal cortex (PFC) of E2 withdrawal induced PPD model rats. Meanwhile, c-fos was also upregulated only in PFC in the same animal model. Injection of GALR1-siRNA into the bilateral PFC ameliorated depressive-like behavior of PPD rats, suggesting that the upregulation of GALR1 in PFC is involved in PPD. Moreover, Western Blot and HPLC assays demonstrated that the downregulation of CREB-BDNF signaling and 5-HT levels in the PFC of PPD rats were reversed after GALR1-siRNA injection. These comprehensive results suggest that the knock down of GALR1 in PFC alleviates depressive-like behaviors and reverse downregulation of CREB-BDNF and 5-HT levels in PPD rat model.HIGHLIGHTS Expression level of GALR1 mRNA was significantly increased in PFC of estrogen withdraw-induced PPD rats.Injecting GALR1-siRNA into PFC alleviated depressive-like behavior and reversed the decrease of 5-HT level and CREB/BDNF signaling in PFC of PPD rats

    Recent advances in clay mineral-containing nanocomposite hydrogels

    Get PDF
    Clay mineral-containing nanocomposite hydrogels have been proven to have exceptional composition, properties, and applications, and consequently have attracted a significant amount of research effort over the past few years. The objective of this paper is to summarize and evaluate scientific advances in clay mineral-containing nanocomposite hydrogels in terms of their specific preparation, formation mechanisms, properties, and applications, and to identify the prevailing challenges and future directions in the field. The state-of-the-art of existing technologies and insights into the exfoliation of layered clay minerals, in particular montmorillonite and LAPONITEs, are discussed first. The formation and structural characteristics of polymer/clay nanocomposite hydrogels made from in situ free radical polymerization, supramolecular assembly, and freezing–thawing cycles are then examined. Studies indicate that additional hydrogen bonding, electrostatic interactions, coordination bonds, hydrophobic interaction, and even covalent bonds could occur between the clay mineral nanoplatelets and polymer chains, thereby leading to the formation of unique three-dimensional networks. Accordingly, the hydrogels exhibit exceptional optical and mechanical properties, swelling–deswelling behavior, and stimuli-responsiveness, reflecting the remarkable effects of clay minerals. With the pivotal roles of clay minerals in clay mineral-containing nanocomposite hydrogels, the nanocomposite hydrogels possess great potential as superabsorbents, drug vehicles, tissue scaffolds, wound dressing, and biosensors. Future studies should lay emphasis on the formation mechanisms with in-depth insights into interfacial interactions, the tactical functionalization of clay minerals and polymers for desired properties, and expanding of their applications

    Electrochemical CO2 reduction on Cu and Au electrodes studied using in situ sum frequency generation spectroscopy.

    Get PDF
    As an important pathway for energy storage and a key reaction in the carbon cycle, the CO2 electrochemical reduction reaction has recently gained significant interest. A variety of catalysts have been used to approach this topic experimentally and theoretically; however, the molecular level insight into the reaction mechanism is lacking due to the complexity of the surface processes and the challenges in probing the intermediate species. In this study, CO2 reduction reactions on polycrystalline Cu and Au electrodes were investigated in 0.1 M CO2-saturated NaHCO3 solution. In situ sum frequency generation (SFG) spectroscopy has been adopted to access the intermediates and products on the metal electrodes. On the Au electrode, only linearly adsorbed CO could be detected, and the reduction produced no hydrocarbon species. On the Cu electrode, C-H stretching vibrations corresponding to surface-adsorbed ethoxy species were observed, but no CO vibrations can be detected with SFG. The results revealed that the CO randomly adsorbed on the Cu surface, and the multiple orientations of the adsorbed species may be the reason for the formation of C-C bonding. These results demonstrate direct molecular level evidence for different reaction pathways on the Cu and Au electrodes

    Is Epstein-Barr Virus Infection Associated With Thyroid Tumorigenesis?—A Southern China Cohort Study

    Get PDF
    Background: Epstein-Barr virus (EBV) is associated with many epithelial malignancies. A few reports on the association between EBV and thyroid tumorigenesis have been investigated. However, the conclusion is highly contradictory. We aimed to explore the role of EBV in thyroid nodule development and its clinical significance in a cohort from southern China.Method: We conducted a retrospective data abstraction study of patients who underwent thyroidectomy between December 2017 and June 2018. We retrospectively analyzed the clinicopathological parameters and EBV infection status (serological antibodies and in situ hybridization).Result: The cohort comprised 384 patients with newly diagnosed thyroid diseases, including 261 papillary thyroid carcinomas, 87 nodular goiters, 21 follicular adenomas, 12 follicular thyroid carcinomas, and 3 medullary thyroid carcinomas. Forty-two (10.9%) patients were identified as being serological antibody positive. However, there was no association between the clinicopathological parameters and serological antibody positivity. Additionally, none of the patients showed EBER expression in thyroid normal/cancer cell nuclei in in situ hybridization.Conclusion: In this study, no correlation between EBV and thyroid diseases was found in a cohort from southern China

    HLA-matched sibling transplantation with G-CSF mobilized PBSCs and BM decreases GVHD in adult patients with severe aplastic anemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment for severe aplastic anemia (SAA). However, graft failure and graft-versus-host disease (GVHD) are major causes of the early morbidity in Allo-HSCT.</p> <p>Methods</p> <p>To reduce graft failure and GVHD, we treated fifteen patients with SAA using high- dose of HSCT with both G-CSF mobilized PB and BMSCs from HLA-identical siblings to treat patients with SAA.</p> <p>Results</p> <p>All patients had successful bone marrow engraftment. Only one patient had late rejection. Median time to ANC greater than 0.5 Ă— 10<sup>9</sup>/L and platelet counts greater than 20 Ă— 10<sup>9</sup>/L was 12 and 16.5 days, respectively. No acute GVHD was observed. The incidence of chronic GVHD was 6.67%. The total three-year probability of disease-free survival was 79.8%.</p> <p>Conclusion</p> <p>HSCT with both G-CSF mobilized PB and BMSCs is a promising approach for heavily transfused and/or allo-immunized patients with SAA.</p
    • …
    corecore