293 research outputs found

    A general study on the volume dependence of spectral weights in lattice field theory

    Full text link
    It has been suggested that the volume dependence of the spectral weight could be utilized to distinguish single and multi-particle states in Monte Carlo simulations. In a recent study using a solvable model, the Lee model, we found that this criteria is applicable only for stable particles and narrow resonances, not for the broad resonances. In this paper, the same question is addressed within the finite size formalism outlined by L\"uscher. Using a quantum mechanical scattering model, the conclusion that was found in previous Lee model study is recovered. Then, following similar arguments as in L\"uscher's, it is argued that the result is valid for a general massive quantum field theory under the same conditions as the L\"uscher's formulae. Using the spectral weight function, a possibility of extracting resonance parameters is also pointed out.Comment: 18 pages, no figure

    Study on Perfume Stimulating Olfaction with Volatile Oil of Acorus Gramineus for Treatment of the Alzheimer's Disease Rat

    Get PDF
    ObjectiveTo probe into the therapeutic efect of perfume stimulating olfaction with volatile oil of Acorus Gramineus on the Alzheimer's disease (AD) rat.MethodsTotally 50 adult SD rats, male, weighing 300±10 g, were randomly divided into 5 groups, normal group (group A), olfactory nerve severing model group (group B), AD model group (group C), AD model plus perfume stimulation group (group D), AD model olfactory nerve severing plus perfume stimulation group (group E), 10 rats in each group. After perfume stimulation, Morris maze test was conducted for valuating the learning and memory ability; Malondaldehyde (MDA) content, and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in the brain, and the brain weight were detected.ResultsCompared with the AD model group, the average escape latency and swimming distance in 6 days were significantly shorter than those in the group A, B, D (P<0.01), with no significant differences between the group C and the group E (P>0.05); Compared with the group A, B and D, MDA content in the group C significantly increased (P<0.01), and SOD and GSH-Px activities significantly decreased (P<0.01), and brain weight/body weight decreased significantly in the group C (P<0.01), with no significant differences between the group C and the group E (P>0.05).ConclusionPerfume stimultating olfaction with volatile oil of Acorus Gramineus can significantly increase the learning-memory ability, decrease MDA content and increase SOD and GSH-Px activities and weight of brain in AD rats

    catena-Poly[[[[N′-(4-cyano­benzyl­idene)nicotinohydrazide]silver(I)]-μ-[N′-4-cyano­benzyl­idene)nicotinohydrazide]] hexa­fluoridoarsenate]

    Get PDF
    In the title compound, {[Ag(C14H10N4O)2]AsF6}n, the AgI ion is coordinated by two N atoms from two different pyridyl rings and one N atom from one carbonitrile group of three different N′-(4-cyano­benzyl­idene)nicotinohydrazide ligands in a distorted T-shaped geometry. The Ag—Ncarbonitrile bond distance is significant longer than those of Ag—Npyrid­yl. The bond angles around the AgI atom are also not in line with those in an ideal T-shaped geometry. One type of ligand acts as the bridge that connects AgI atoms into chains along [01]. These chains are linked to each other via N—H⋯O hydrogen bonds and Ag⋯O inter­actions with an Ag⋯O separation of 2.869 (2) Å. In addition, the [AsF6]− counter-anions are linked to the hydrazone groups through N—H⋯F hydrogen bonds. Four of the F atoms of the [AsF6]− anion are disordered over two sets of sites with occupancies of 0.732 (9) and 0.268 (9)

    Magmatic record of India-Asia collision

    Get PDF
    This work was financially co-supported by Chinese Academy of Sciences (XDB03010301) and other Chinese funding agencies (Project 973: 2011CB403102 and 2015CB452604; NSFC projects: 41225006, 41273044, and 41472061).New geochronological and geochemical data on magmatic activity from the India-Asia collision zone enables recognition of a distinct magmatic flare-up event that we ascribe to slab breakoff. This tie-point in the collisional record can be used to back-date to the time of initial impingement of the Indian continent with the Asian margin. Continental arc magmatism in southern Tibet during 80-40 Ma migrated from south to north and then back to south with significant mantle input at 70-43 Ma. A pronounced flare up in magmatic intensity (including ignimbrite and mafic rock) at ca. 52-51 Ma corresponds to a sudden decrease in the India-Asia convergence rate. Geological and geochemical data are consistent with mantle input controlled by slab rollback from ca. 70 Ma and slab breakoff at ca. 53 Ma. We propose that the slowdown of the Indian plate at ca. 51 Ma is largely the consequence of slab breakoff of the subducting Neo-Tethyan oceanic lithosphere, rather than the onset of the India-Asia collision as traditionally interpreted, implying that the initial India-Asia collision commenced earlier, likely at ca. 55 Ma.Publisher PDFPeer reviewe

    More on volume dependence of spectral weight function

    Full text link
    Spectral weight functions are easily obtained from two-point correlation functions and they might be used to distinguish single-particle from multi-particle states in a finite-volume lattice calculation, a problem crucial for many lattice QCD simulations. In previous studies, it is shown that the spectral weight function for a broad resonance shares the typical volume dependence of a two-particle scattering state i.e. proportional to 1/L31/L^3 in a large cubic box of size LL while the narrow resonance case requires further investigation. In this paper, a generalized formula is found for the spectral weight function which incorporates both narrow and broad resonance cases. Within L\"uscher's formalism, it is shown that the volume dependence of the spectral weight function exhibits a single-particle behavior for a extremely narrow resonance and a two-particle behavior for a broad resonance. The corresponding formulas for both A1+A^+_1 and T1−T^-_1 channels are derived. The potential application of these formulas in the extraction of resonance parameters are also discussed

    Radiative transitions in charmonium from Nf=2N_f=2 twisted mass lattice QCD

    Full text link
    We present a study for charmonium radiative transitions: J/ψ→ηcγJ/\psi\rightarrow\eta_c\gamma, χc0→J/Ψγ\chi_{c0}\rightarrow J/\Psi\gamma and hc→ηcγh_c\rightarrow\eta_c\gamma using Nf=2N_f=2 twisted mass lattice QCD gauge configurations. The single-quark vector form factors for ηc\eta_c and χc0\chi_{c0} are also determined. The simulation is performed at a lattice spacing of a=0.06666a= 0.06666 fm and the lattice size is 323×6432^3\times 64. After extrapolation of lattice data at nonzero Q2Q^2 to 0, we compare our results with previous quenched lattice results and the available experimental values.Comment: typeset with revtex, 15 pages, 11 figures, 4 table

    Light Controllable Electronic Phase Transition in Ionic Liquid Gated Monolayer Transition Metal Dichalcogenides

    Get PDF
    Ionic liquid gating has proved to be effective in inducing emergent quantum phenomena such as superconductivity, ferromagnetism, and topological states. The electrostatic doping at two-dimensional interfaces relies on ionic motion, which thus is operated at sufficiently high temperature. Here, we report the in situ tuning of quantum phases by shining light on an ionic liquid-gated interface at cryogenic temperatures. The light illumination enables flexible switching of the quantum transition in monolayer WS2 from an insulator to a superconductor. In contrast to the prevailing picture of photoinduced carriers, we find that in the presence of a strong interfacial electric field conducting electrons could escape from the surface confinement by absorbing photons, mimicking the field emission. Such an optical tuning tool in conjunction with ionic liquid gating greatly facilitates continuous modulation of carrier densities and hence electronic phases, which would help to unveil novel quantum phenomena and device functionality in various materials

    Numerical Analysis of Erosion Caused by Biomimetic Axial Fan Blade

    Get PDF
    Damage caused by erosion has been reported in several industries for a wide range of situations. In the present work, a new method is presented to improve the erosion resistance of machine components by biomimetic method. A numerical investigation of solid particle erosion in the standard and biomimetic configuration blade of axial fan is presented. The analysis consists in the application of the discrete phase model, for modeling the solid particles flow, and the Eulerian conservation equations to the continuous phase. The numerical study employs computational fluid dynamics (CFD) software, based on a finite volume method. User-defined function was used to define wear equation. Gas/solid flow axial fan was simulated to calculate the erosion rate of the particles on the fan blades and comparatively analyzed the erosive wear of the smooth surface, the groove-shaped, and convex hull-shaped biomimetic surface axial flow fan blade. The results show that the groove-shaped biomimetic blade antierosion ability is better than that of the other two fan blades. Thoroughly analyze of antierosion mechanism of the biomimetic blade from many factors including the flow velocity contours and flow path lines, impact velocity, impact angle, particle trajectories, and the number of collisions
    • …
    corecore