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Magmatic record of India-Asia 
collision
Di-Cheng Zhu1, Qing Wang1, Zhi-Dan Zhao1, Sun-Lin Chung2,3, Peter A. Cawood4,5, 
Yaoling Niu1,6, Sheng-Ao Liu1, Fu-Yuan Wu7 & Xuan-Xue Mo1

New geochronological and geochemical data on magmatic activity from the India-Asia collision 
zone enables recognition of a distinct magmatic flare-up event that we ascribe to slab breakoff. 
This tie-point in the collisional record can be used to back-date to the time of initial impingement 
of the Indian continent with the Asian margin. Continental arc magmatism in southern Tibet during 
80–40 Ma migrated from south to north and then back to south with significant mantle input at 
70–43 Ma. A pronounced flare up in magmatic intensity (including ignimbrite and mafic rock) at 
ca. 52–51 Ma corresponds to a sudden decrease in the India-Asia convergence rate. Geological and 
geochemical data are consistent with mantle input controlled by slab rollback from ca. 70 Ma and 
slab breakoff at ca. 53 Ma. We propose that the slowdown of the Indian plate at ca. 51 Ma is largely 
the consequence of slab breakoff of the subducting Neo-Tethyan oceanic lithosphere, rather than 
the onset of the India-Asia collision as traditionally interpreted, implying that the initial India-Asia 
collision commenced earlier, likely at ca. 55 Ma.

Continental collision is a dramatic expression of the dynamic nature of the Earth and has long-term 
impacts on atmosphere and ocean circulation patterns, and on the development and stability of the con-
tinental lithosphere. One of the most prominent collisions today is the ongoing interaction between the 
Indian and Asian continents. However, the timing of the initial India-Asia collision remains uncertain 
with suggestions ranging from 70 to 34 Ma1–9. This uncertainty reflects in part the differing approaches 
used to define collision.

Continental collision is the natural consequence of plate tectonics involving oceans opening and clos-
ing and is driven by a variety of forces most notably the descent of oceanic lithosphere at subduction 
zones (i.e. slab pull)10,11. Such understanding, together with the primary mechanisms of magma genera-
tion (i.e., adding fluids, increasing temperature, and decreasing pressure), allows us to place constraints 
on the relationship between collisional processes and magmatic responses (Fig. 1).

(1) Initial collision, takes place at the initial contact of crust between two continents (Fig.  1a). At 
this stage, oceanic lithosphere continues to subduct and dehydrates (releasing fluids), resulting in the 
generation of normal continental arc magmatism dominated by andesitic rocks as seen in the Andes. 
(2) Ongoing collision, involves the thin passive continental lithosphere being dragged by the subducting 
oceanic lithosphere (slab pull) (Fig.  1b). Minor syn-collisional magmatism during this stage is mostly 
peraluminous and derived from a metapelite-dominated source within the middle-upper crust due 
to reduced dehydration of the subducting oceanic lithosphere (releasing fluids), convective heat from 
small-scale mantle flow12, and shear heating13. (3) Tectonic transition, occurs due to the buoyancy of the 
lower plate continental lithosphere counteracts the effects of slab-pull of the oceanic lithosphere resulting 
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in their separation (slab breakoff14) (Fig.  1c). After slab breakoff, the collision zone transitions into an 
intracontinental setting. Slab breakoff will open a slab window and consequently trigger partial melting 
of differing magma source regions (by increasing the temperature of lithosphere and decreasing the 
pressure of asthenosphere), producing intense magmatism with compositional diversity (defined here as 
post-collisional magmatism) (including basaltic magmatism showing within-plate basalt geochemistry, 
bimodal magmatism, and anorogenic felsic magmatism, etc.)15,16. From initial to ongoing collision, the 
surface plate may not slow down significantly as the attached continental lithosphere is thin with less 
resistance to subduct due to the descent of the dense oceanic lithosphere (slab pull), whereas after slab 
breakoff during the tectonic transition the velocity of the surface plate is expected to decrease signifi-
cantly due to the loss of the slab pull force that is the main driving force of plate motion10,11.

The evolving magmatic record from ongoing subduction to collision, slab breakoff, and further con-
tinental lithospheric interaction provides a framework to evaluate continent-continent collision. This 
is because slab breakoff will postdate the initial continent-continent collision by several to ten million 
years, depending on convergence velocity, subducting slab dip8, and shape of the colliding margins. Thus, 
defining the timing of slab breakoff, which can be identified on the integration of geological, geochemi-
cal, geochronological, and geophysical methods15–20, provides an important time-stamp on the sequence 
of collision-related events.

The Gangdese arc in southern Tibet (Fig. 2a), which records the subduction of the Neo-Tethyan oce-
anic lithosphere and subsequent India-Asia collision21, allows a direct test of our petrological approach 
to resolving the timing of India-Asia collision. This is because the voluminous Linzizong volcanic rocks 
(Fig.  2b,c) and coeval intrusive rocks of the Gangdese arc (Fig.  2d) range in age from 70 to 40 Ma22, 
straddling the interpreted timing of collision1–9. We provide the first comprehensive dataset on the age 
and geochemistry of these rocks enabling us to tightly constrain the progressive history of convergence 
and collision, including redefining the timing of the latter.

Spatial, temporal and compositional changes of the Gangdese arc
The Linzizong volcanic rocks (Fig. 2b) extend for more than 1000 km along the southern Lhasa Terrane 
and are well exposed in Linzhou Basin (Fig. S1). In this basin, the lower unit of the Linzizong volcanic 
rocks (Dianzhong Formation) is dominated by thick andesitic rocks (Fig.  2c), which unconformably 
overlie strongly folded Upper Cretaceous siltstone and mudstone (Fig. S1). The middle unit (Nianbo 
Formation) is characterized by siltstone, marl, and limestone interbedded with andesitic rocks (Fig. 2c). 
The upper unit (Pa’na Formation) is characterized by the presence of thick rhyolite and rhyolitic 
ignimbrite (Fig.  2c) with columnar jointing (Fig. S1). We undertook SIMS (secondary ion mass spec-
trometry) U-Pb zircon dating23 of magmatic rocks from the stratigraphic boundaries of each formation 
(Fig. S1). Sample details, zircon U-Pb age data, and geochemical data are provided in Tables S1 and 
S2 in the supplementary material. Our new age data are shown in red ovals with numerals in Fig.  2c 
and S1 and are summarized in Table 1. The SIMS U-Pb zircon age data of two samples (13LZ01-1 and 
13LZ17-1) from the lowermost Dianzhong Formation (60.2 ±  0.6 and 60.2 ±  0.8 Ma, respectively) and 
of one sample (13LZ08-1) from the uppermost Dianzhong Formation (58.3 ±  1.3 Ma) indicate that the 
Dianzhong andesitic volcanism was most likely active during 60.2–58.3 Ma. One sample (12LZ29-1) 
from the lowermost Nianbo Formation (55.4 ±  0.5 Ma) and two samples (12LZ27-1 and 13LZ16-1) from 
the Upper Nianbo Formation (52.6 ±  0.4 and 52.7 ±  1.9 Ma, respectively) provide age constraint on the 
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Figure 1.  Schematic sequence of the relationship between collisional processes and magmatic responses 
in collision zones. This figure is generated by Di-Cheng Zhu, using Adobe Illustrator CS4 created by the 
Adobe Illustrator Team under an open license.
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Nianbo Formation of 55.4–52.6 Ma. This is very compatible with the age data obtained from two marl 
samples (13LZ13-1 and 13LZ14-1) from the lower Nianbo Formation (54.4 ±  0.5 and 54.5 ±  0.7 Ma). 
Three samples from the Lower (12LZ25-1), Middle (13LZ05-1), and Uppermost (13LZ04-1) Pa’na 
Formation give SIMS U-Pb zircon ages of 52.3 ±  0.5, 52.6 ±  0.4, and 52.3 ±  0.6 Ma, indistinguishable 
within analytical errors. These data precisely bracket the duration of each formation of the Linzizong 
volcanic rocks from the Linzhou Basin: 60.2–58.3 Ma for the Dianzhong Formation, 55.4–52.6 Ma for the 
Nianbo Formation, and 52.6–52.3 Ma for the Pa’na Formation. Thus the duration of magmatic activity is 
some 8 m.y. defined by SIMS zircon U-Pb dating and differs significantly from previous estimates of up to 
25 m.y. based on laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) zircon U-Pb 
and Ar-Ar dating for the Dianzhong (69–61 Ma), Nianbo (61–54 Ma), and Pa’na (54–44 Ma) formations 
(see ref. 24 for age summary). 

The Gangdese Batholith extends over 1500 km along the southern Lhasa Terrane (Fig. 2a). It is com-
posed mainly of diorite and granodiorite, together with abundant mafic enclaves and dykes (Fig. S1). To 
obtain a comprehensive dataset with adequate spatial coverage, we collected a total of 127 samples with 
LA-ICPMS U-Pb zircon age data and 213 samples with whole-rock geochemical data on the 80–40 Ma 
intrusive rocks extending from longitude E85° to E95° along the strike of the batholith (Fig. 2d). Sample 
details, zircon U-Pb age data, and SiO2 contents are provided in Tables S3 and S4 in the supplementary 
material. These age data reveal that the > 72 Ma magmatism was confined to a narrow belt in the south 
(blue dashed line, Fig. 2d), shifting northward at 71–65 Ma (red dashed line), then south at 64–48 Ma, 
which spread over a relatively broader area than the earlier activity, and is finally (47–38 Ma) largely 

Figure 2.  Tectonic framework of the Tibetan Plateau and the Lhasa Terrane. (a) Showing the Gangdese 
arc in the context of the Tibetan Plateau. IYZSZ =  Indus-Yarlung Zangbo suture zone, BNSZ =  Bangong-
Nujiang suture zone, JSSZ =  Jinsha suture zone. (b) The distribution of the Linzizong volcanic rocks.  
(c) The stratigraphic column of the Linzizong volcanic rocks in Linzhou Basin4. The filled ovals with 
numerals are host-rock crystallization ages in Ma using in situ zircon secondary ion mass spectrometry 
(SIMS) U-Pb dating method (see supplementary Table S1 for sample details). (d) The distribution of 
intrusive rocks in the Gangdese arc. The filled circles indicate sample locations, numerals within ovals are 
host-rock crystallization ages in Ma using in situ zircon LA-ICPMS U-Pb dating method (see supplementary 
Table S2 for sample details). Five groups of zircon ages are recognized on the basis of spatial variation 
of magmatism and different magmatic origin22. This figure is generated by Di-Cheng Zhu, using Adobe 
Illustrator CS4 created by the Adobe Illustrator Team under an open license. (e) Histogram of crystallization 
ages (Ma) of the intrusive rocks (85–94°E) from the Gangdese Batholith. The red line represents frequency 
curve. Age data used in this histogram are the crystallization ages defined by the youngest group of zircon 
analyses of each sample. The bin width was set at 1.5 Ma to accommodate average age uncertainties of 
1.1 Ma (2σ ; Table S3). Only one age datum is selected for each pluton if between-sample age difference is 
lower than 3 Myrs. If this difference is more than 3 Myrs, this pluton is considered to emplace at different 
pulses and thus the different emplacement ages are used to construct the histogram.



www.nature.com/scientificreports/

4Scientific Reports | 5:14289 | DOI: 10.1038/srep14289

restricted to its southern edge. These age data define a pulse of magmatic flare-up event at ca. 51 Ma 
along the entire length of the arc (Fig. 2e).

Changes in the chemical composition of the Linzizong volcanic rocks available from the Linzhou 
Basin and the Gangdese Batholith with time are illustrated by SiO2 variation and zircon saturation tem-
perature26 against age (Fig.  3). Figure  3a shows that an andesite-dacite association in the Dianzhong 
Formation was followed by bimodal volcanic suites in both the Nianbo and Pa’na formations. Figure 3b 
reveals an increase in zircon saturation temperature at ca. 52 Ma documented by the rhyolitic rocks in 
the Pa’na Formation. Figure 3c illustrates felsic-dominated magmatism in the Gangdese Batholith dur-
ing 80–73 Ma, followed by significant mafic magmatic activity at 70–43 Ma. It is important to note that 
bimodal magmatism coeval with or slightly younger than the Nianbo and Pa’na bimodal volcanism is 
most likely developed within the Gangdese Batholith as indicated by the presence of ca. 52–47 Ma gab-
broic dykes that intruded into the coeval granitoid (Fig. S1g). The absence of compositional gap in the 
whole Gangdese Batholith (Fig. 3c) is probably the consequences of magma mixing between felsic and 
basaltic melts27 as indicated by the well-developed coeval mafic enclaves (Figs S1h, S1i, and S1j).

Discussion
Temporal trends for enhanced mafic magmatism and increased zircon saturation temperature within the 
Linzizong volcanic rocks and Gangdese Batholith indicate an increased mantle heat input. It is empha-
sized that increased mantle input and coeval magmatic flare-up are difficult to attribute to a large scale 
change in the stress state of the lithosphere. This is because such change is a shallow response to deep 
mantle dynamics and is not an effective mechanism that will produce extensive magmatic activity. One 
possible explanation for higher mantle heat input at 70–43 Ma was the removal of the Asian lithosphere 
following tectonic shortening between 90 and 69 Ma28. However, to account for the southward migration 
of the magmatism from 72–65 Ma to 64–48 Ma (Fig.  2d), and significantly increased zircon saturation 
temperature at ca. 52 Ma and peak activity at ca. 51 Ma (Fig. 2e), we argue for slab steepening (Fig. 4a,b) 
and rollback (Fig. 4c) followed by slab breakoff (Fig. 4d).

We infer that the breakoff of the Neo-Tethyan lithosphere occurred slightly earlier (e.g., ca. 53 Ma; Fig. 4d) 
than the rapid eruption of ca. 2 km thick rhyolite and rhyolitic ignimbrite (52.5–52.3 Ma) (Fig. 2c) documented 
by the Linzizong volcanic rocks (Pa’na Formation) and the magmatic flare-up event of ca. 51 Ma shown by the 
age relationships within the Gangdese Batholith (Fig. 2e). This inference is consistent with numerical mode-
ling that indicates a short duration of slab breakoff (< 2 Ma29) followed by intense magmatism as a result of 
the enhanced heat input from rising asthenosphere30. Other robust lines of evidence supporting our model of 
slab breakoff by this time include: (1) the occurrence of abundant 52–47 Ma mafic enclaves and dykes (Fig. 
S1) that suggest significantly increased contributions from the mantle; (2) the presence of ca. 52.5 Ma bimodal 
volcanic rocks (Fig. 3a) that points to partial melting of enriched metasomatic layers within lithospheric man-
tle and to crustal melting caused by thermotectonic effects as a result of slab breakoff15; (3) high Zr/Y ratios 

Formation Sample Rock Type GPS position Strata position
Dating 
method Analyses Age (Ma) MSWD

Pa’na Formation

13LZ04-1 Rhyolitic breccia N30°00.643′ , E91°08.810′  Uppermost Pa’na SIMS 1280 19 52.29 ±  0.61 2.5

13LZ05-1a Rhyolitic ignimbrite N30°00.137′ , E91°08.882′  Middle Pa’na SIMS 1280 16 52.58 ±  0.40 1.3

13LZ06-1 Rhyolite N29°59.964′ , E91°08.700′  Middle Pa’na LA-ICPMS 16 50.5 ±  0.4 0.1

12LZ23-1 Rhyolitic ignimbrite N29°59.622′ , E91°08.415′  Middle Pa’na LA-ICPMS 16 49.7 ±  0.4 0.2

12LZ25-1 Rhyolite N29°59.313′ , E91°08.474′  Lower Pa’na SIMS 1280 13 52.27 ±  0.45 0.8

Nianbo Formation

13LZ16-1 Andesite N29°59.078′ , E91°11.209′  Upper Nianbo SIMS 1280 4 52.7 ±  1.9 2.0

12LZ27-1 Rhyolitic tuff N29°58.557′ , E91°08.736′  Upper Nianbo SIMS 1280 15 52.64 ±  0.42 0.5

13LZ13-1 Marl N29°58.812′ , E91°11.159′  Lower Nianbo SIMS 1280 14 54.35 ±  0.47 1.1

13LZ14-1 Marl N29°58.815′ , E91°11.158′  Lower Nianbo SIMS 1280 10 54.45 ±  0.68 1.3

12LZ29-1 Rhyolite N29°58.231′ , E91°08.955′  Lowermost Nianbo SIMS 1280 14 55.37 ±  0.45 0.4

Dianzhong Formation

13LZ08-1 Andesite N29°58.708′ , E91°11.195′  Uppermost Dianzhong SIMS 1280 2 58.3 ±  1.3 0.01

12LZ06-1 Dacite N29°57.273′ , E91°12.107′  Lower Dianzhong LA-ICPMS 17 58.5 ±  0.5 0.4

13LZ17-1b Volcanic breccia N29°57.292′ , E91°13.048′  Lowermost Dianzhong SIMS 1280 13 60.23 ±  0.78 1.8

13LZ01-1c Andesite N29°57.117′ , E91°11.855′  Lowermost Dianzhong SIMS 1280 21 60.22 ±  0.61 2.0

Table 1.   Summary of new zircon U-Pb age data reported in this study for the Linzizong volcanic rocks 
in Linzhou Basin, southern Tibet. aRhyolitic ignimbrite with well-developed columnar jointing. bca. 50 cm 
above the angular unconformity between the Dianzhong and Shexing formations located ca. 78 m east of 
sample SH530022 that was dated by LA ICP-MS method at 68.7 ±  2.4 Ma (MSWD =  3.6)25. cca. 20 cm above 
the angular unconformity between the Dianzhong and Shexing formations.
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(3.7–6.8) of the basaltic lavas and dykes (ca. 52.9 Ma) in the Linzizong volcanic rocks (Table S2) that suggest 
input of subslab asthenospheric mantle16; and (4) dramatically increased zircon saturation temperature at ca. 
52.5 Ma recovered by the rhyolitic rocks of the Pa’na Formation (Fig. 3b) that indicates the anomalously high 
heat input from the mantle.

The development of magmatic activity at 51–43 Ma in the Gangdese arc (Fig. 3b), as well as ca. 50 Ma 
diabase dykes that intrude serpentinitized peridotite within the Yarlung-Zangbo suture zone (Fig.  2d), 
is most likely the consequences of partial melting of differing magma source regions through increasing 
temperature of lithosphere and decreasing pressure of asthenosphere after slab breakoff. This interpreta-
tion is consistent with numerical modeling which indicates that hot asthenosphere continues to ascend 
and generates melt for several million years after slab breakoff (Fig.  4e)30. The shift in the whole-rock 
Nd and zircon Hf isotopic compositions towards negative values at ca. 50 Ma6,31,32 most likely reflects 
a profound change of the source regions associated with the involvement of slab edge materials of the 
Indian continent that had already been subducted to depths19,32 (Fig. 4e), rather than indicative of the 
initial India-Asia collision6.

The timing of rapid eruption of thick rhyolitic ignimbrite (ca. 52.5 Ma) in the Linzizong volcanic rocks 
and intense magmatism (ca. 51 Ma) in the Gangdese Batholith matches the sudden drop of the conver-
gence rate of the Indian plate at ca. 51 Ma33–35. This synchronicity of events suggests that the slowdown 
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Figure 3.  Changes in magmatic compositions with time in the Gangdese arc. (a,b) Plots of SiO2 content 
versus age (Ma) and of zircon saturation temperature (°C) versus age (Ma) for the Linzizong volcanic rocks 
(see supplementary Table S4 for geochemical data). Zircon saturation temperatures were calculated from 
whole-rock compositions with SiO2 > 56 wt.% following the method of Watson and Harrison (1983)26.  
(c) Plot of SiO2 content versus age (Ma) for the Gangdese Batholith (E85°–E95°) (see Table S5 for 
geochemical data). Note that this plot did not show a clear increase of mafic magmatism at ca. 51 Ma as 
indicated by the presence of well-developed mafic enclaves and dykes (Fig. S1); this inconsistency reflects 
sampling bias with mafic material underrepresented.
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of the Indian plate is largely the consequence of slab breakoff (Fig.  4e). This is because slab breakoff 
will result in the loss of the slab pull force14,29, which exerts a dominant influence on the velocity of the 
surface plate and cause a drastic change in plate motion10,11,36,37. Subsequent intracontinental conver-
gence (Fig. 4f) of the Indian continental lithosphere beneath the Asian lithosphere after slab breakoff is 
likely driven by the subduction of dense Indian continental lithosphere38 and slab-pull of oceanic lith-
osphere on the Indo-Australian plate along the Indonesian segment of the plate margin39. Traditionally, 
the slow-down of the Indian plate at ca. 51 Ma is attributed to the increased resistance to subduction 
interpreted as a result of the initial India-Asia collision33,34. However, we consider this interpretation 
questionable because (1) under such a collisional regime, no appropriate mechanisms (see Fig. 1b) are 
available for producing extensive magmatism in southern Tibet as presented in this study (Fig. 2c and S1) 
and (2) the surface motion of the plate is closely related to or substantially driven by mantle dynamics 
(i.e., slab pull10,11,36,37) and thus if such a driving force disappears, significant slow down would occur.

It is beyond the scope of this article to discuss in detail the problems of each interpreted age (70–34 Ma) 
proposed for the initiation of the India-Asia collision (see ref.  9, for review). We emphasize that any 
estimates on the collisional timing must effectively explain all the first-order observations of the spatial, 
temporal (Fig. 2d), and compositional changes (Fig. 3) of magmatic activities summarized in this study. 
In particular, we must explain the specific geodynamical processes responsible for the southward migra-
tion of magmatism from 72–65 Ma to 64–48 Ma followed by the generation of dramatically enhanced 
magmatism precisely constrained at ca. 52 Ma in the Gangdese arc, including volumetrically significant 
ignimbrite in the Linzizong volcanic rocks (Fig.  2c) and widely developed mafic enclaves and dykes 
(Fig. S1) in the Gangdese Batholith. Such enhanced magmatism requires anomalously high-temperature 
material and heat supply from the mantle, which are unlikely to be explained by later slab breakoff (at 
ca. 50–40 Ma40, 45 Ma18, 48–44 Ma41, and 50 Ma42,43) that would predate intense magmatism29,30, or by 
ca. 50 Ma India-Asia or Tethyan Himalaya-Asia collision44 that would result in a compression regime 
without intense magmatism (Fig. 1b).

Eclogite-facies peak metamorphism in the western Himalaya was recently refined at ca. 47–43 Ma 
and consequently an age of ca. 51–47 Ma was proposed for the initial India-Asia collision8. However, this 
collision age is likely an underestimate because the exhumed ultrahigh-pressure rocks may not represent 
the materials from the leading edge of subducted Indian continental margin.

Slab breakoff is likely inevitable in all collision zones involving a passive continental margin14. It fol-
lows that subducted continental crust has reached its maximum depth when slab breakoff occurs. This 
means that slab breakoff provides a maximal age for continental collision. In the case of the India-Asia 
collision, if Neo-Tethyan slab breaks off at ca. 53 Ma, the initial India-Asia collision should commence 
at ca. 55 Ma. This is because the progressively enlarged subducting slab dip revealed by the southward 
migration of magmatism from 72–65 Ma to 64–48 Ma (Fig. 2d) and high India-Asia convergence veloc-
ity35 point to a time lag of ca. 1–2 Ma (Table S6) between initial collision and slab breakoff.

This timing of the initial India-Asia collision (ca. 55 Ma) obtained from our petrological approach 
is in good agreement with recent estimates on collision ages from the cessation of Xigaze forearc 
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Figure 4.  Schematic illustrations showing the India-Asia collisional processes and resultant 
tectonomagmatic activity over the past 70–40 m.y. (not to scale). This figure is generated by Di-Cheng 
Zhu, using Adobe Illustrator CS4 created by the Adobe Illustrator Team under an open license.
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sedimentation (ca. 58–54 Ma45), the dramatic change of sedimentary environment and the development 
of an unconformity in the Xigaze forearc basin (> 56 Ma46), the onset of India-Asia terrestrial faunal 
exchange (ca. 54 Ma47), the reappraisal of existing paleomagnetic data (52.4 ±  4.5 Ma9), and the new 
paleomagnetic data (ca. 54.3 Ma48). This collision may account for the angular unconformity between 
the Dianzhong and Nianbo formations in Linzhou Basin (Fig.  2c) and coeval unconformity found in 
the Xigaze forearc basin46 due to the locking of the subduction zone on arrival of the Indian continent 
at the trench12. Therefore, it seems most probable that (1) the Dianzhong andesitic volcanism was gen-
erated during the transition from late subduction to initial collision (Fig.  4a,b), (2) the lower Nianbo 
terrestrial sedimentation represents the ongoing India-Asia collision prior to slab breakoff with a short 
duration from initial to ongoing collision due to the high India-Asia convergence velocity35, and (3) 
the late Nianbo and Pa’na bimodal volcanic rocks (Fig. 3a) are linked to mantle decompression melting 
and crustal anatexis due to the ascent of hot asthenosphere through slab window after slab breakoff30 
(Fig. 4d,e). Nevertheless, we note that the exact timing of initial impingement of the Indian margin with 
the subduction zone will depend on the degree of distention of the Asian margin and may vary along 
the strike of the convergence zone due to irregularities in shape of the margin.

Our work shows that the petrological approach that we employ here can effectively distin-
guish processes at varying stages of continental collision. This approach may be applied to other 
continent-continent collision zones also involving a passive continental margin on the down-going plate, 
such as the Arabia-Eurasia collision zone — where the preserved magmatic record straddles the pro-
posed Arabia-Eurasia collision age49,50.
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