2,094 research outputs found

    Isolation and antibacterial activity of anabaena phycocyanin

    Get PDF
    The isolation and antibacterial activity of anabaena phycocyanin were investigated. The result indicates that three kinds of protein ingredients: PC-A, PC-B and PC-C were obtained using high performance liquid chromatography. The estimated molecular masses of PC-A and PC-B were 14 to 18 kD. PC-B and PC-C had certain antibacterial activity on Bibrio parahemolyticus, Bacillus mucilaginosus and Sarcina lutea. In addition, PC-C had certain antibacterial activity on Vibrio harveyi. PC-A did not possess antibacterial activity in the study.Keywords: Anabaena, phycocyanin, liquid chromatogram, antibacterialAfrican Journal of Biotechnology Vol. 12(15), pp. 1869-187

    Realization of Zero-Refractive-Index Lens with Ultralow Spherical Aberration

    Full text link
    Optical complex materials offer unprecedented opportunity to engineer fundamental band dispersion which enables novel optoelectronic functionality and devices. Exploration of photonic Dirac cone at the center of momentum space has inspired an exceptional characteristic of zero-index, which is similar to zero effective mass in fermionic Dirac systems. Such all-dielectric zero-index photonic crystals provide an in-plane mechanism such that the energy of the propagating waves can be well confined along the chip direction. A straightforward example is to achieve the anomalous focusing effect without longitudinal spherical aberration, when the size of zero-index lens is large enough. Here, we designed and fabricated a prototype of zero-refractive-index lens by comprising large-area silicon nanopillar array with plane-concave profile. Near-zero refractive index was quantitatively measured near 1.55 um through anomalous focusing effect, predictable by effective medium theory. The zero-index lens was also demonstrated to perform ultralow longitudinal spherical aberration. Such IC compatible device provides a new route to integrate all-silicon zero-index materials into optical communication, sensing, and modulation, and to study fundamental physics on the emergent fields of topological photonics and valley photonics.Comment: 14 pages, 4 figure

    Effects of degree distribution in mutual synchronization of neural networks

    Full text link
    We study the effects of the degree distribution in mutual synchronization of two-layer neural networks. We carry out three coupling strategies: large-large coupling, random coupling, and small-small coupling. By computer simulations and analytical methods, we find that couplings between nodes with large degree play an important role in the synchronization. For large-large coupling, less couplings are needed for inducing synchronization for both random and scale-free networks. For random coupling, cutting couplings between nodes with large degree is very efficient for preventing neural systems from synchronization, especially when subnetworks are scale-free.Comment: 5 pages, 4 figure

    5 GHz TMRT observations of 71 pulsars

    Full text link
    We present integrated pulse profiles at 5~GHz for 71 pulsars, including eight millisecond pulsars (MSPs), obtained using the Shanghai Tian Ma Radio Telescope (TMRT). Mean flux densities and pulse widths are measured. For 19 normal pulsars and one MSP, these are the first detections at 5~GHz and for a further 19, including five MPSs, the profiles have a better signal-to-noise ratio than previous observations. Mean flux density spectra between 400~MHz and 9~GHz are presented for 27 pulsars and correlations of power-law spectral index are found with characteristic age, radio pseudo-luminosity and spin-down luminosity. Mode changing was detected in five pulsars. The separation between the main pulse and interpulse is shown to be frequency independent for six pulsars but a frequency dependence of the relative intensity of the main pulse and interpulse is found. The frequency dependence of component separations is investigated for 20 pulsars and three groups are found: in seven cases the separation between the outmost leading and trailing components decreases with frequency, roughly in agreement with radius-to-frequency mapping; in eleven cases the separation is nearly constant; in the remain two cases the separation between the outmost components increases with frequency. We obtain the correlations of pulse widths with pulsar period and estimate the core widths of 23 multi-component profiles and conal widths of 17 multi-component profiles at 5.0~GHz using Gaussian fitting and discuss the width-period relationship at 5~GHz compared with the results at at 1.0~GHz and 8.6~GHz.Comment: 46 pages, 14 figures, 8 Tables, accepted by Ap

    Enhanced surface acceleration of fast electrons by using sub-wavelength grating targets

    Full text link
    Surface acceleration of fast electrons in intense laser-plasma interaction is improved by using sub-wavelength grating targets. The fast electron beam emitted along the target surface was enhanced by more than three times relative to that by using planar target. The total number of the fast electrons ejected from the front side of target was also increased by about one time. The method to enhance the surface acceleration of fast electron is effective for various targets with sub-wavelength structured surface, and can be applied widely in the cone-guided fast ignition, energetic ion acceleration, plasma device, and other high energy density physics experiments.Comment: 14 pages, 4figure

    Properties of weighted complex networks

    Full text link
    We study two kinds of weighted networks, weighted small-world (WSW) and weighted scale-free (WSF). The weight wijw_{ij} of a link between nodes ii and jj in the network is defined as the product of endpoint node degrees; that is wij=(kikj)θw_{ij}=(k_{i}k_{j})^{\theta}. In contrast to adding weights to links during networks being constructed, we only consider weights depending on the `` popularity\rq\rq of the nodes represented by their connectivity. It was found that the both weighted networks have broad distributions on characterization the link weight, vertex strength, and average shortest path length. Furthermore, as a survey of the model, the epidemic spreading process in both weighted networks was studied based on the standard \emph{susceptible-infected} (SI) model. The spreading velocity reaches a peak very quickly after the infection outbreaks and an exponential decay was found in the long time propagation.Comment: 14 pages, 5 figure
    • …
    corecore