308 research outputs found

    Numerical Strategies of Computing the Luminosity Distance

    Full text link
    We propose two efficient numerical methods of evaluating the luminosity distance in the spatially flat {\Lambda}CDM universe. The first method is based on the Carlson symmetric form of elliptic integrals, which is highly accurate and can replace numerical quadratures. The second method, using a modified version of Hermite interpolation, is less accurate but involves only basic numerical operations and can be easily implemented. We compare our methods with other numerical approximation schemes and explore their respective features and limitations. Possible extensions of these methods to other cosmological models are also discussed.Comment: 4 pages, 2 figures. v2: A minor error in the last equation has been corrected (conclusions are not affected). v3: Accepted by MNRA

    Cosmological constraints on holographic dark energy models under the energy conditions

    Full text link
    We study the holographic and agegraphic dark energy models without interaction using the latest observational Hubble parameter data (OHD), the Union2.1 compilation of type Ia supernovae (SNIa), and the energy conditions. Scenarios of dark energy are distinguished by the cut-off of cosmic age, conformal time, and event horizon. The best-fit value of matter density for the three scenarios almost steadily located at Ξ©m0=0.26\Omega_{m0}=0.26 by the joint constraint. For the agegraphic models, they can be recovered to the standard cosmological model when the constant cc which presents the fraction of dark energy approaches to infinity. Absence of upper limit of cc by the joint constraint demonstrates the recovery possibility. Using the fitted result, we also reconstruct the current equation of state of dark energy at different scenarios, respectively. Employing the model criteria Ο‡min2/dof\chi^2_{\textrm{min}}/dof, we find that conformal time model is the worst, but they can not be distinguished clearly. Comparing with the observational constraints, we find that SEC is fulfilled at redshift 0.2≲z≲0.30.2 \lesssim z \lesssim 0.3 with 1Οƒ1\sigma confidence level. We also find that NEC gives a meaningful constraint for the event horizon cut-off model, especially compared with OHD only. We note that the energy condition maybe could play an important role in the interacting models because of different degeneracy between Ξ©m\Omega_m and constant cc.Comment: 8 pages, 4 figures, accepted for publication in PR

    Joint Communication and Computational Resource Allocation for QoE-driven Point Cloud Video Streaming

    Full text link
    Point cloud video is the most popular representation of hologram, which is the medium to precedent natural content in VR/AR/MR and is expected to be the next generation video. Point cloud video system provides users immersive viewing experience with six degrees of freedom and has wide applications in many fields such as online education, entertainment. To further enhance these applications, point cloud video streaming is in critical demand. The inherent challenges lie in the large size by the necessity of recording the three-dimensional coordinates besides color information, and the associated high computation complexity of encoding. To this end, this paper proposes a communication and computation resource allocation scheme for QoE-driven point cloud video streaming. In particular, we maximize system resource utilization by selecting different quantities, transmission forms and quality level tiles to maximize the quality of experience. Extensive simulations are conducted and the simulation results show the superior performance over the existing scheme

    Analytical solutions to the spin-1 Bose-Einstein condensates

    Full text link
    We analytically solve the one-dimensional coupled Gross-Pitaevskii equations which govern the motion of F=1 spinor Bose-Einstein condensates. The nonlinear density-density interactions are decoupled by making use of the unique properties of the Jacobian elliptical functions. Several types of complex stationary solutions are deduced. Furthermore, exact non-stationary solutions to the time-dependent Gross-Pitaevskii equations are constructed by making use of the spin-rotational symmetry of the Hamiltonian. The spin-polarizations exhibit kinked configurations. Our method is applicable to other coupled nonlinear systems.Comment: 12 figure

    Incomplete nonextensive statistics and the zeroth law of thermodynamics

    Get PDF
    National Natural Science Foundation of China [11005041]; Natural Science Foundation of Fujian Province, China [2010J05007]; Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China [2010-1561]; Basic Science Research Foundation, China [JB-SJ1005]; Science Research Fund of Huaqiao University, China [11BS207]On the basis of the entropy of incomplete statistics (IS) and the joint probability factorization condition, two controversial problems existing in IS are investigated: one is what expression of the internal energy is reasonable for a composite system and the other is whether the traditional zeroth law of thermodynamics is suitable for IS. Some new equivalent expressions of the internal energy of a composite system are derived through accurate mathematical calculation. Moreover, a self-consistent calculation is used to expound that the zeroth law of thermodynamics is also suitable for IS, but it cannot be proven theoretically. Finally, it is pointed out that the generalized zeroth law of thermodynamics for incomplete nonextensive statistics is unnecessary and the nonextensive assumptions for the composite internal energy will lead to mathematical contradiction

    Arabidopsis NMD3 Is Required for Nuclear Export of 60S Ribosomal Subunits and Affects Secondary Cell Wall Thickening

    Get PDF
    NMD3 is required for nuclear export of the 60S ribosomal subunit in yeast and vertebrate cells, but no corresponding function of NMD3 has been reported in plants. Here we report that Arabidopsis thaliana NMD3 (AtNMD3) showed a similar function in the nuclear export of the 60S ribosomal subunit. Interference with AtNMD3 function by overexpressing a truncated dominant negative form of the protein lacking the nuclear export signal sequence caused retainment of the 60S ribosomal subunits in the nuclei. More interestingly, the transgenic Arabidopsis with dominant negative interference of AtNMD3 function showed a striking failure of secondary cell wall thickening, consistent with the altered expression of related genes and composition of cell wall components. Observation of a significant decrease of rough endoplasmic reticulum (RER) in the differentiating interfascicular fiber cells of the transgenic plant stems suggested a link between the defective nuclear export of 60S ribosomal subunits and the abnormal formation of the secondary cell wall. These findings not only clarified the evolutionary conservation of NMD3 functions in the nuclear export of 60S ribosomal subunits in yeast, animals and plants, but also revealed a new facet of the regulatory mechanism underlying secondary cell wall thickening in Arabidopsis. This new facet is that the nuclear export of 60S ribosomal subunits and the formation of RER may play regulatory roles in coordinating protein synthesis in cytoplasm and transcription in nuclei

    Anti-cancer treatment within two weeks serves as a risk factor for clinical outcomes among cancer patients with COVID-19

    Get PDF
    BackgroundThe coronavirus disease 2019 (COVID-19) pandemic has resulted in infections among patients with cancer. Our study aimed to investigate the potential adverse impact of anti-cancer treatments within 2 weeks of COVID-19 infection on clinical outcomes in patients with cancer.MethodsThis retrospective cohort study analyzed 70 cancer patients with COVID-19 infection from the First Hospital of Jilin University in Changchun City, Jilin Province, between March and June 2022. Data on demographic characteristics, vaccination status, COVID-19 clinical classification, symptoms, complications, tumor-related characteristics, laboratory examinations and medical interventions were extracted from electronic medical record. The primary outcome of our study was Intensive Care Unit (ICU) admission. Logistic regression model was performed to investigate the association between anti-cancer treatments within 2 weeks after COVID-19 infection and the risk of ICU admission.ResultsOf the 70 patients enrolled in this study, 37 received anti-cancer treatments within 2 weeks after COVID-19 infection. Patients receiving anti-cancer treatment were more likely to experience non-mild COVID-19, require oxygen therapy, develop acute respiratory distress syndrome (ARDS) and exhibit elevated inflammatory levels. The risk of ICU admission (P<0.001) and 30-day mortality after reverse transcriptase polymerase chain reaction (RT-PCR) negative conversion (P=0.007) was significantly higher in patients receiving anti-cancer treatments. In multivariate Logistic regression analysis, non-mild classification of COVID-19, anti-cancer treatments within 2 weeks and ECOG > 1were all independently associated with ICU admission after adjusting for confounder factors. The risk of ICU admission rose to 43.63 times (95% confidence interval=1.31–1452.94, P=0.035) in patients receiving anti-cancer treatments within 2 weeks.ConclusionAnti-cancer treatments within 2 weeks of COVID-19 infection increase the risk of ICU admission and 30-day mortality after RT-PCR negative conversion in patients with cancer. It may be recommended to postpone cancer-related treatments for more than 2 weeks in cancer patients with COVID-19 infection
    • …
    corecore