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Incomplete nonextensive statistics and the zeroth law of
thermodynamics∗
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b)Department of Physics, Xiamen University, Xiamen 361005, China

(Received 2 August 2012; revised manuscript received 6 September 2012)

On the basis of the entropy of incomplete statistics (IS) and the joint probability factorization condition, two contro-
versial problems existing in IS are investigated: one is what expression of the internal energy is reasonable for a composite
system and the other is whether the traditional zeroth law of thermodynamics is suitable for IS. Some new equivalent ex-
pressions of the internal energy of a composite system are derived through accurate mathematical calculation. Moreover, a
self-consistent calculation is used to expound that the zeroth law of thermodynamics is also suitable for IS, but it cannot be
proven theoretically. Finally, it is pointed out that the generalized zeroth law of thermodynamics for incomplete nonexten-
sive statistics is unnecessary and the nonextensive assumptions for the composite internal energy will lead to mathematical
contradiction.
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1. Introduction
As is well known, in spite of its great success,

Boltezman–Gibbs statistical mechanics are actually not com-
pletely universal. Nonextensive statistical mechanics[1–3] pi-
oneered by Tsallis[4] offers a consistent theoretical frame-
work for the studies of complex systems with long-range in-
teractions, long-time memories, multifractal and self-similar
structures, or anomalous diffusion phenomena. On the basis
of Tsallis’ statistics, Wang[5] put forward the concept of in-
complete statistics (IS). At present Tsallis’ statistics and IS
have become two important branches of nonextensive statis-
tical mechanics.[6–20] Recently, IS has been used to research
the thermostatistic properties of a variety of physical systems
with long-range interacting and/or long-duration memory, and
many significant results have been obtained.[9–19] For exam-
ple, it has been found that for some chaotic systems evolv-
ing in fractal phase space,[10,11] the entropy change in time
due to the fractal geometry is assimilated to the information
growth through the scale refinement; and that the general-
ized fermion distributions based on incomplete information
hypothesis can be useful for describing correlated electron
systems.[12,13] However, when investigating the thermostatistic
properties of a composite system, especially for nonextensive
systems with different values of q indices,[11,18] one needs to
deal with two fundamental problems which are similar to those
solved recently in Tsallis’ statistics,[21] one of which is how to
give a reasonable expression of the internal energy of a com-

posite system and the other is how to expound whether the ze-
roth law of thermodynamics is true. Although these two prob-
lems have been discussed for many years,[5,9,11,14] they have
not been solved up to now, and consequently, have affected
the development and improvement of incomplete nonexten-
sive statistics. Recently, a concomitant definition of the phys-
ical temperature in IS is given,[19] which may shed light on
the further investigation of the problems existing in IS. In the
present paper, with the help of the results obtained in Refs. [5]
and [19] and the joint probability factorization condition, we
will discuss the two important problems mentioned above and
give some useful conclusions.

2. Temperature in IS
According to the results of IS proposed by Wang,[5] the

entropy for a nonextensive system may be expressed as

Sq = k

w
∑

i=1
pi−1

q−1
, (1)

with the incomplete normalization
w

∑
i

pq
i = 1, (2)

where k is the Boltzmann constant, pi is the probability of the
state i among W possible states that are acceptable to the cal-
culation, εi is the energy of the system in state i, and q is a
parameter which may be used to describe the nonextensility of
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the system. By the way, the so-called nonextensibility of the
system means that X 6= ∑

l
Xl , where X and Xl indicate the cor-

responding thermodynamic quantities of the composite system
and subsystems, respectively. When the nonextensibility of

the system is negligible, X = ∑
l

Xl is true. For convenience,
w
∑

i=1
is replaced by ∑

i
below.

With Eqs. (1) and (2) and the expression of internal en-
ergy

Uq =
w

∑
i

pq
i εi, (3)

Wang[5] used the Lagrange equation

δ

(
Sq +

α

1−q ∑
i

pq
i −αβUq

)
= 0

with the Lagrange multiplier αβ of the average energy to de-
rive the distribution function as[5,7,9,14,16,17]

pi =
[1− (1−q)βεi]

1/(1−q)

Zq
, (4)

and the expression of entropy as[5,7,9,14]

Sq = k
Zq−1

q −1
q−1

+ kβZq−1
q Uq (5)

with

Zq =

{
∑

i
[1− (1−q)βεi]

q/(1−q)

}1/q

. (6)

On the basis of the above results, it has been strictly
proven that[19]

∑
i

pi = Zq−1
q [1− (1−q)βUq] (7)

and

∂Sq/∂Uq = kβZq−1
q /q = kβ

′ =
1
T
, (8)

where β ′ = βZq−1
q /q = 1/(kT ) and T is the physical tempera-

ture of the system in equilibrium. This T definition is different
from the original one of IS in any one of Refs. [5], [7], [9],
[11], [14], [16], and [18] where β is defined as the physical

(measurable) temperature. It shows[19] that β in Refs. [5], [7],
[9], [11], [14], [16], and [18] is not equal to 1/(kT ).

It is interesting to note that when the fundamental rela-
tionship of thermodynamics δQ = T dS is demanded to hold
for all the local Rindler causal horizons through each space-
time point, the Einstein equation can be derived from the pro-
portionality of entropy and the horizon area together with this
relationship,[22] where δQ and T are interpreted as the en-
ergy flux and Unruh temperature seen by an accelerated ob-
server just inside the horizon, respectively. It is worthwhile to
point out that the fundamental relationship mentioned above
also holds for the incomplete statistics, and consequently,
it is expected that the IS may be used to discuss the Un-
ruh temperature[23,24] of the Rindler spacetime.[25] This Un-
ruh effect may be of great relevance to the theory of a new
form of Tsallis distribution,[26] fractal spacetime,[27] and ultra-
relativistic plasmas.[28]

3. Nonextensive expressions of the internal en-
ergy
For an independent system C composed of two subsys-

tems A and B, of which the distributions satisfy [4–7,9,11,14,18,21]

pi j(C) = pi(A)p j(B) (9)

or

pq
i j(C) = pq

i (A)pq
j(B), (10)

one can derive the pseudo-additivity entropy rule[5,7,9,11,14,18]

Sq(C) = Sq(A)+Sq(B)+ [(q−1)/k]Sq(A)Sq(B) (11)

from Eqs. (1) and (9). Using the law of entropy conservation
δSq(C) = 0 and Eq. (11), one can obtain[9,11,13,14,18]

[1+(q−1)Sq(B)/k]
∂Sq(A)
∂Uq(A)

δUq(A)

+[1+(q−1)Sq(A)/k]
∂Sq(B)
∂Uq(B)

δUq(B) = 0. (12)

On the other hand, from Eqs. (4) and (7)–(9), we can ob-
tain

[1− (1−q)β (C)εi j(C)]1/(1−q)

Zq(C)
=

[1− (1−q)β (A)εi(A)]1/(1−q)[1− (1−q)β (B)ε j(B)]1/(1−q)

Zq(A)Zq(B)
, (13)

1− (1−q)β (C)Uq(C)

Z1−q
q (C)

=
[1− (1−q)β (A)Uq(A)][1− (1−q)β (B)Uq(B)]

Z1−q
q (A)Z1−q

q (B)
, (14)

or

β ′(C)

β (C)
− (1−q)β ′(C)Uq(C) = q

[
β ′(A)
β (A)

− (1−q)β ′(A)Uq(A)
][

β ′(B)
β (B)

− (1−q)β ′(B)Uq(B)
]
. (15)
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Equations (13)–(15) are equivalent to each other. It is seen
from Eqs. (13)–(15) that the internal energy in IS is nonexten-
sive.

It is significant to note that in the derivative process
of Eqs. (13)–(15), we did not add any assumption except
Eqs. (1)–(3) and (9) which had been adopted in IS, and
that equations (13)–(15) are different from the nonexten-
sive expressions of the composite internal energy, derived in
Refs. [5], [7], [9], [11], and [14], because some empirical as-
sumptions have been employed and we will see the mathemat-
ical contradiction below.

4. The zeroth law of thermodynamics
When systems A and B are in equilibrium, one important

condition

T (A) = T (B) = T (C) (16)

may be adopted, and consequently, equations (15) may be sim-
plified into

1
β (C)

− (1−q)Uq(C)

= qβ
′
[

1
β (A)β (B)

− 1−q
β (A)

Uq(B)−
1−q
β (B)

Uq(A)

+(1−q)2Uq(A)Uq(B)
]
. (17)

Using the law of energy conservation δUq(C) = 0 and
Eq. (17), one can obtain[

(1−q)Uq(B)−
1

β (B)

]
∂

∂Uq(A)

×
[

β ′

β (A)(q−1)
+β

′Uq(A)
]

δUq(A)

+

[
(1−q)Uq(A)−

1
β (A)

]
∂

∂Uq(B)

×
[

β ′

β (B)(q−1)
+β

′Uq(B)
]

δUq(B) = 0. (18)

Substituting Eqs. (5), (7), (8), and (16) into Eq. (18), one has

∑
j

p j(B)δUq(A)+∑
i

pi(A)δUq(B) = 0. (19)

From Eqs. (1), (12), and (19), one obtains

∂Sq(A)
∂Uq(A)

=
∂Sq(B)
∂Uq(B)

or β
′(A) = β

′(B), (20)

which is nothing but the zeroth law of thermodynamics. Obvi-
ously, the physical essence of Eq. (20) is completely identical
with that of Eq. (16). This implies that starting from Eq. (16),
one obtains Eq. (20), which is the same result as Eq. (16).
Thus, it is clear that the derivative process of Eq. (20) is of a

self-consistent calculation only, but is not a proof for the ze-
roth law of thermodynamics in IS. Like in Tsallis’ statistics,[21]

the zeroth law of thermodynamics still holds in IS, but it can-
not be proved theoretically. The conclusion conforms to Abe’s
standpoint,[20] i.e., statistical mechanics may be modified but
the thermodynamics should remain unchanged.

5. Discussion
When the following assumption[7]

Zq(C) = Zq(A)Zq(B) (21)

is adopted, equations (13) and (14) may be, respectively, sim-
plified into

β (C)εi j(C) = β (A)εi(A)+β (B)ε j(B)

+(q−1)β (A)β (B)εi(A)ε j(B) (22)

and

β (C)Uq(C) = β (A)Uq(A)+β (B)Uq(B)

+(q−1)β (A)β (B)Uq(A)Uq(B). (23)

From Eqs. (7), (8), and (20), one can obtain

∑
i j

pi j(C)+(1−q)qβ
′(C)Uq(C)

=

[
∑

i
pi(A)+(1−q)qβ

′(A)Uq(A)
]

×
[
∑

j
p j(B)+(1−q)qβ

′(B)Uq(B)
]
. (24)

Substituting Eqs. (9) and (16) into Eq. (24) gives

Uq(C) = ∑
i

pi(A)Uq(B)+∑
j

p j(B)Uq(A)

+(1−q)qβ
′Uq(A)Uq(B). (25)

Using Eqs. (7) and (25) and the law of energy conservation,
we obtain[

∂Zq−1
q (A)

∂Uq(A)
Uq(B)+∑

j
p j(B)

]
δUq(A)

+

[
∂Zq−1

q (B)
∂Uq(B)

Uq(A)+∑
i

pi(A)

]
δUq(B) = 0, (26)

where[19]

∂Zq

∂Uq
=

Zq

q

∑
i

e2q−1
q (−βεi)εi

∑
i

e2q−1
q (−βεi)(ε2

i −Uqεi)
, (27)

and eq(x) = [1+(1− q)x]1/(1−q). Equation (26) is obviously
in contradiction with Eq. (12) because ∂Zq/∂Uq 6= 0, so that
equation (20) may not be derived. This means that the cal-
culation process is not self-consistent and that the assumption
given above, i.e., equation (21), does not hold true.
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If the other assumption

β (C) = β (A) = β (B) (28)

is also adopted, equations (22) and (23) may be further simpli-
fied into

εi j(C) = εi(A)+ ε j(B)+(q−1)βεi(A)ε j(B) (29)

and

Uq(C) =Uq(A)+Uq(B)+(q−1)βUq(A)Uq(B), (30)

respectively. Equations (29) and (30) are simply the main re-
sults obtained in Refs. [5], [7], [9], [11], and [14] and have
been used to discuss the zeroth law of thermodynamics.

In Refs. [7] and [11], equation (30) was used to calculate
the variation of the internal energy

δUq(C) = [1+(q−1)βUq(B)]δUq(A)

+[1+(q−1)βUq(A)]δUq(B) (31)

and to derive the generalized zeroth law of thermody-
namics[7,9,14]

Z1−q
q (A)

∂S(A)
∂U(A)

= Z1−q
q (B)

∂S(B)
∂U(B)

or β (A) = β (B). (32)

This seems to be a self-consistent calculation. However, it
can be clearly seen from the analysis of Eqs. (30) and (31)
that equation (21) does not hold true so equation (32) can-
not be derived. The cause may be explained as follows:
when the systems are in equilibrium, the rational assumption
should be described by Eq. (16) rather than Eq. (28), because
∂Sq/∂Uq = 1/T 6= kβ .[19]

If equation (30) is directly used, one will obtain the ex-
pression of the variation of the internal energy as

δUq(C) = {1+(q−1)[βUq(B)+Uq(A)Uq(B)∂β/∂Uq(A)]}
×δUq(A)+{1+(q−1)[βUq(A)

+Uq(A)Uq(B)∂β/∂Uq(B)]}δUq(B) (33)

with[19]

∂Uq

∂β
=

q∑
i

e2q−1
q (−βεi)(Uqεi− ε2

i )

Zq
q

. (34)

Using the law of energy conservation δUq(C) = 0 and
Eqs. (12) and (33), one only obtains the following equation

∑
j

p j(B){1+(q−1)[βUq(A)

+Uq(A)Uq(B)∂β/∂Uq(B)]}
∂Sq(A)
∂Uq(A)

= ∑
i

pi(A){1+(q−1)[βUq(B)

+Uq(A)Uq(B)∂β/∂Uq(A)]}
∂Sq(B)
∂Uq(B)

. (35)

Equation (35) is obviously different from Eq. (32) and is in
contradiction with Eq. (28). It indicates that it is unnecessary
to introduce the generalized zeroth law of thermodynamics.

The above discussion clearly shows that the two empir-
ical assumptions described above will lead to mathematical
contradiction, so neither equation (29) nor equation (30) is the
correct expression of the internal energy of a composite sys-
tem in IS.

6. Conclusions
With the help of the entropy expression proposed by

Wang[5] and the results obtained in Ref. [19], we solve two
important problems in IS. The internal energy in IS is nonex-
tensive. The reasonable expressions should be given by
Eqs. (13)–(15) rather than Eqs. (29) and (30). The zeroth law
of thermodynamics cannot be proved theoretically, but it still
holds true in IS, while the so-called generalized zeroth law
of thermodynamics is unnecessary. The results obtained here
shows clearly that the empirical assumptions like Eqs. (21) and
(28) lead to inconsistent results, so they should not be em-
ployed.
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[16] Pezeril M, Méhauté A L and Wang Q A 2004 Chaos, Solitons & Frac-

tals 21 1143
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