50 research outputs found

    Own-Race Faces Capture Attention Faster than Other-Race Faces: Evidence from Response Time and the N2pc

    Get PDF
    Studies have shown that people are better at recognizing human faces from their own-race than from other-races, an effect often termed the Own-Race Advantage. The current study investigates whether there is an Own-Race Advantage in attention and its neural correlates. Participants were asked to search for a human face among animal faces. Experiment 1 showed a classic Own-Race Advantage in response time both for Chinese and Black South African participants. Using event-related potentials (ERPs), Experiment 2 showed a similar Own-Race Advantage in response time for both upright faces and inverted faces. Moreover, the latency of N2pc for own-race faces was earlier than that for other-race faces. These results suggested that own-race faces capture attention more efficiently than other-race faces

    Clomazone impact on fungal network complexity and stability

    Get PDF
    IntroductionSoil fungal network composition and stability are important for soil functions, but there is less understanding of the impact of clomazone on network complexity and stability.MethodsIn this work, two agricultural soils were used to investigate the impact of clomazone on fungal network complexity, composition, and stability. The two soils were treated with clomazone solution (0, 0.8, 8, and 80  mg kg−1) and kept in an incubator.Results and DiscussionUnder the influence of clomazone, the fungal network nodes were decreased by 12–42; however, the average degree was increased by 0.169–1.468 and fungal network density was increased by 0.003–0.054. The keystone nodes were significantly changed after clomazone treatment. Network composition was also impacted. Specifically, compared with control and clomazone treatments in both soils, the shared edges were fewer than 54 in all comparisons, and network dissimilarity was 0.97–0.98. These results suggested that fungal network composition was significantly impacted. The network robustness was increased by 0.0018–0.0209, and vulnerability was decreased by 0.00018–0.00059 in both soils, which indicated that fungal network stability was increased by clomazone. In addition, the functions of network communities were also changed in both soils. These results indicated that clomazone could significantly impact soil fungal networks

    Simplified HIV Testing and Treatment in China: Analysis of Mortality Rates Before and After a Structural Intervention.

    Get PDF
    BackgroundMultistage stepwise HIV testing and treatment initiation procedures can result in lost opportunities to provide timely antiretroviral therapy (ART). Incomplete patient engagement along the continuum of HIV care translates into high levels of preventable mortality. We aimed to evaluate the ability of a simplified test and treat structural intervention to reduce mortality.Methods and findingsIn the "pre-intervention 2010" (from January 2010 to December 2010) and "pre-intervention 2011" (from January 2011 to December 2011) phases, patients who screened HIV-positive at health care facilities in Zhongshan and Pubei counties in Guangxi, China, followed the standard-of-care process. In the "post-intervention 2012" (from July 2012 to June 2013) and "post-intervention 2013" (from July 2013 to June 2014) phases, patients who screened HIV-positive at the same facilities were offered a simplified test and treat intervention, i.e., concurrent HIV confirmatory and CD4 testing and immediate initiation of ART, irrespective of CD4 count. Participants were followed for 6-18 mo until the end of their study phase period. Mortality rates in the pre-intervention and post-intervention phases were compared for all HIV cases and for treatment-eligible HIV cases. A total of 1,034 HIV-positive participants (281 and 339 in the two pre-intervention phases respectively, and 215 and 199 in the two post-intervention phases respectively) were enrolled. Following the structural intervention, receipt of baseline CD4 testing within 30 d of HIV confirmation increased from 67%/61% (pre-intervention 2010/pre-intervention 2011) to 98%/97% (post-intervention 2012/post-intervention 2013) (all p < 0.001 [i.e., for all comparisons between a pre- and post-intervention phase]), and the time from HIV confirmation to ART initiation decreased from 53 d (interquartile range [IQR] 27-141)/43 d (IQR 15-113) to 5 d (IQR 2-12)/5 d (IQR 2-13) (all p < 0.001). Initiation of ART increased from 27%/49% to 91%/89% among all cases (all p < 0.001) and from 39%/62% to 94%/90% among individuals with CD4 count ≤ 350 cells/mm3 or AIDS (all p < 0.001). Mortality decreased from 27%/27% to 10%/10% for all cases (all p < 0.001) and from 40%/35% to 13%/13% for cases with CD4 count ≤ 350 cells/mm3 or AIDS (all p < 0.001). The simplified test and treat intervention was significantly associated with decreased mortality rates compared to pre-intervention 2011 (adjusted hazard ratio [aHR] 0.385 [95% CI 0.239-0.620] and 0.380 [95% CI 0.233-0.618] for the two post-intervention phases, respectively, for all newly diagnosed HIV cases [both p < 0.001], and aHR 0.369 [95% CI 0.226-0.603] and 0.361 [95% CI 0.221-0.590] for newly diagnosed treatment-eligible HIV cases [both p < 0.001]). The unit cost of an additional patient receiving ART attributable to the intervention was US83.80.TheunitcostofadeathpreventedbecauseoftheinterventionwasUS83.80. The unit cost of a death prevented because of the intervention was US234.52.ConclusionsOur results demonstrate that the simplified HIV test and treat intervention promoted successful engagement in care and was associated with a 62% reduction in mortality. Our findings support the implementation of integrated HIV testing and immediate access to ART irrespective of CD4 count, in order to optimize the impact of ART

    Gazelle: A Low Latency Framework for Secure Neural Network Inference

    Full text link
    The growing popularity of cloud-based machine learning raises a natural question about the privacy guarantees that can be provided in such a setting. Our work tackles this problem in the context where a client wishes to classify private images using a convolutional neural network (CNN) trained by a server. Our goal is to build efficient protocols whereby the client can acquire the classification result without revealing their input to the server, while guaranteeing the privacy of the server's neural network. To this end, we design Gazelle, a scalable and low-latency system for secure neural network inference, using an intricate combination of homomorphic encryption and traditional two-party computation techniques (such as garbled circuits). Gazelle makes three contributions. First, we design the Gazelle homomorphic encryption library which provides fast algorithms for basic homomorphic operations such as SIMD (single instruction multiple data) addition, SIMD multiplication and ciphertext permutation. Second, we implement the Gazelle homomorphic linear algebra kernels which map neural network layers to optimized homomorphic matrix-vector multiplication and convolution routines. Third, we design optimized encryption switching protocols which seamlessly convert between homomorphic and garbled circuit encodings to enable implementation of complete neural network inference. We evaluate our protocols on benchmark neural networks trained on the MNIST and CIFAR-10 datasets and show that Gazelle outperforms the best existing systems such as MiniONN (ACM CCS 2017) by 20 times and Chameleon (Crypto Eprint 2017/1164) by 30 times in online runtime. Similarly when compared with fully homomorphic approaches like CryptoNets (ICML 2016) we demonstrate three orders of magnitude faster online run-time

    Vitamin D and cause-specific vascular disease and mortality:a Mendelian randomisation study involving 99,012 Chinese and 106,911 European adults

    Get PDF

    Vertical distribution of gas exchanges and their integration throughout the entire canopy in a maize field

    No full text
    Fluxes of carbon and water along a vertical profile within a canopy, particularly the associations between canopy and ecosystem levels, are not well studied. In this study, gas exchange along the vertical profile in a maize canopy was examined. The relationships between leaf- and ecosystem-level carbon and water fluxes were compared. The results from research conducted over two growing seasons showed that during vegetative growth, the top and middle leaf layers in the canopy contribute most to the carbon and water fluxes of the entire canopy. During the grain-filling stage, gas exchange processes were performed mostly in the middle leaves with and near the ears. Significant relationships were observed between the net ecosystem CO2 exchange rate (NEE) plus soil respiration and the assumed canopy levels (A(canopy)) and between evapotranspiration rates at the ecosystem (ET) and assumed canopy levels (E-canopy). This highlights the close associations between these parameters by integrating the leaf gas exchange rates measured in a conventional leaf cuvette and those at the ecosystem level via the eddy covariance technique. These results improve our understanding of how carbon assimilation varies vertically within a canopy, highlighting the critical role of ear leaves

    A Split G-Quadruplex and Graphene Oxide-Based Low-Background Platform for Fluorescence Authentication of Pseudostellaria heterophylla

    No full text
    A label-free split G-quadruplex and graphene oxide (GO)-based fluorescence platform has been designed to distinguish Pseudostellaria heterophylla (PH) from its adulterants based on the differences in their nrDNA ITS sequences. Herein, GO has been first introduced to capture G-rich probes with 2:2 split mode and then decrease the background signal. As T-DNA exists, the probes leave the GO surface to form double-stranded structures followed by the formation of the overhanging G-rich sequence into a G-quadruplex structure, which combines quinaldine red specifically to produce a strong fluorescence signal. In addition, this strategy allows detection of T-DNA in a wide range of concentrations from 1.0 × 10−8 to 2.0 × 10−6 mol·L−1 with a detection limit of 7.8 × 10−9 mol·L−1. We hope that the split G-quadruplex/GO platform can be utilized to further develop gene identification sensors in Traditional Chinese Medicine or other analysis areas

    Hepatocyte Aggregate Formation on Chitin-Based Anisotropic Microstructures of Butterfly Wings

    No full text
    Scaffold nanotopography plays the most significant role in the mimicry of the in vivo microenvironment of the hepatocytes. Several attempts have been made to develop methods and substrates suited to growing hepatocytes into aggregates. Functional biomaterials, particularly biodegradable polymers, have been used in several studies aimed to develop improved scaffolds with ordered geometry and nanofibrous architecture for tissue engineering. However, there are still some limitation in their fabrication: it is not cost-efficient, is time-consuming, and exhibits some technological complications. The synthetic scaffolds are usually non-biodegradable and can be non-biocompatible compared to the naturally derived biomaterials. Here, we utilized a simple, cost-effective, and green method with two-step chemical treatment to get more selected hydrophilic butterfly wings from Morpho menelaus, Papilio ulysses telegonus, and Ornithoptera croesus lydius as a chitin-based natural scaffolds to growing hepatocyte aggregates. We established a three-dimensional (3D) in vitro model for culture of HepG2 cells and aggregate formation that maintained the hepatocytes function on these natural anisotropic microstructures. Cells cultured on these substrates show higher viability than those cultured on a two-dimensional (2D) culture plate. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay results revealed excellent viability of HepG2 cells on P. u. telegonus wings (fibrous area). The results also demonstrated appropriate cell activity, cell retention, and stable and functional expression in terms of albumin secretion and urea synthesis activity compared to the 2D monolayer culture of hepatocytes on the culture dish surface. With a slightly different degree, the other substrates also shown similar results. We anticipate that these natural anisotropic, biodegradable, and biocompatible substrates can maintain long-term hepatic culture as an in vitro 3D model for potential therapeutic applications and regenerative tissue applications. The model presented here provides a feasible alternative to the synthetic scaffolds and is expected to be more reliable for 3D organotypic liver culture models based on such scaffolds

    Tracking chlorophyll fluorescence as an indicator of drought and rewatering across the entire leaf lifespan in a maize field

    No full text
    Plant growth and photosynthesis in response to water status have been extensively investigated. However, elucidating the photosynthetic process and its indicators under a drought episode and rewatering across the entire leaf lifespan is often neglected. In this experiment, three water treatments were set during two growth seasons: a control treatment, moderate persistent drought (T-1), and severe persistent drought (T-2). Maize leaf chlorophyll fluorescence emission was analyzed to determine the regulative responses of the photosynthetic potentials and photosystem II (PSII) photochemistry process to drought and rewatering in situ. A severe drought episode during the peak vegetative growth stage resulted in decreases in chlorophyll content, the maximal efficiency of PSII photochemistry (F-v/F-m), and photochemical quenching, but increases in non-photochemical quenching and the yield for dissipation by downregulation. Rewatering only restored partial PSII functions in plants that had undergone historical drought episodes. An analysis of non-photochemical pathways of thermal dissipation indicates that regulative photoprotection of the photosystem apparatus may occur through heat dissipation when an effect of severe drought episode appeared on a young leaf; however, rewatering did not enhance photoprotection with leaf aging. Compared to the control treatment, the yield of T-1 and T-2 decreased by 25.1% and 27.1% in 2015, and 26.4% and 54.3% in 2016, respectively. The chlorophyll content was significantly and closely correlated with F-v/F-m (R = 0.65, P < 0.001) and the maximum versus minimum fluorescence yield in the dark-adapted state (F-m/F-o)(R = 0.72, P < 0.001). Additionally, the two parameters can be suggested to feasibly track chlorophyll content changes and the degree of leaf senescence in responses to a drought episode and its interaction with leaf aging: F-m/F-o and the relative limitation to photosynthesis (RLP). The current results may provide a profound insight into better understanding the underlying mechanism of photosynthetic potentials and photochemistry efficiency and photoprotection in response to drought episodes and rewatering over the entire leaf lifespan

    Vertical distributions of chlorophyll and nitrogen and their associations with photosynthesis under drought and rewatering regimes in a maize field

    No full text
    In this study, we characterize the vertical leaf distribution of chlorophyll (Chl) and nitrogen (N) content and their associations with leaf photosynthetic responses in Zea mays L. under field watering regimes. We simulated five precipitation patterns, including a drought-rewatering sequence using an electric-powered, rainproof shelter. The results indicate the vertical leaf Chl and N distribution versus the cumulative leaf-area index (LAIc) fit well into a significant quadratic function. The simulated precipitation patterns significantly influenced the parabolic curve trajectory patterns and their parameters. Chlorophyll and N contents had the same trend, with a close and positive relationship. Drought stress followed by rewatering increased the slopes of the linear equations but narrowed the parabolic opening of the quadratic functions. This finding implies that the relationship between Chl and N content can be used to estimate responses to drought and rewatering. The findings also suggested that the relationship patterns between Chl and N levels could be an assessment tool for N-fertilizer managements under different drought conditions to maintain high yields in maize production. Principal component analysis indicated the correlations between functional traits in maize leaves and the responses to drought and rehydration. These findings help to improve drought management and cultivar selection, which will be important in coping with the severe intensity and high frequency of episodic drought events expected from climate change
    corecore