31 research outputs found

    Effect of host shift on the gut microbes of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae)

    Get PDF
    BackgroundGut microbes play an important role in the adaptation of insects. Polyphagous insects usually undergo changes in gut microbiota after host shift. The Bactrocera cucurbitae have a wide range of hosts, but the dynamic of gut microorganisms during host shift have not been thoroughly investigated. To understand the role of gut microbes in insect adaptation, it is necessary to study the dynamics of insect gut microorganisms during host transfer.MethodsUsing Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) and its four hosts as study subjects, we investigated the dynamics of gut microbes during host transfer and the effects of different hosts on the gut microbial composition of B. cucurbitae.ResultsThe results showed that the Chao1 index of B. cucurbitae decreased significantly during host transfer, and the intestinal microorganisms were significantly affected by the original host, host, and generations. Furthermore, predicated changes in the abundance of secondary metabolite pathways after host transfer suggested that microorganisms may play an important role in the degradation of secondary metabolites, among which Providencia and Morganella have important functions in the gut of B. cucurbitae.ConclusionThis implied that microorganisms play a function in the host transfer process of B. cucurbitae and may be an important cofactor in the adaptation of B. cucurbitae to different hosts and environments, providing new research ideas for the future control of B. cucurbitae

    Fertilizer potential of liquid product from hydrothermal treatment of swine manure

    Get PDF
    Compared with composting, hydrothermal treatment (HTT) technology can dramatically shorten the duration for manure waste treatment. This study firstly investigated the effect of HTT on solubilization of N, P and organics from swine manure, and then evaluated the phytotoxicity of liquid product from hydrothermally treated manure by seed germination test. Results show that 98% of N in manure could be converted into soluble form after HTT at 200 °C for 60 min. Soluble P in hydrothermally treated manure (at 150 °C for 60 min) was 2.7 times that in raw manure. The germination indices (GI) were all greater than 100% when the liquid product (from HTT at 150 °C for 60 min) or its diluted samples being used. Results from this study suggest that HTT could be a promising technology for producing safe and value-added liquid fertilizers from swine manure

    Enhancing Wireless Transmission from the Body with Wearable Diffractive Patterns

    No full text
    10.1103/PhysRevApplied.12.054020Physical Review Applied12505402

    Introducing High-Valence Iridium Single Atoms into Bimetal Phosphides toward High-Efficiency Oxygen Evolution and Overall Water Splitting

    No full text
    Single atoms are superior electrocatalysts having high atomic utilization and amazing activity for water oxidation and splitting. Herein, this work reports a thermal reduction method to introduce high-valence iridium (Ir) single atoms into bimetal phosphide (FeNiP) nanoparticles toward high-efficiency oxygen evolution reaction (OER) and overall water splitting. The presence of high-valence single Ir atoms (Ir4+) and their synergistic interaction with Ni3+ species as well as the disproportionation of Ni3+ assisted by Fe collectively contribute to the exceptional OER performance. In specific, at appropriate Ir/Ni and Fe/Ni ratios, the as-prepared Ir-doped FeNiP (Ir-25-Fe16Ni100P64) nanoparticles at a mass loading of only 35 mu g cm(-2) show the overpotential as low as 232 mV at 10 mA cm(-2) and activity as high as 1.86 A mg(-1) at 1.5 V versus RHE for OER in 1.0 m KOH. Computational simulations confirm the vital role of high-valence Ir to weaken the adsorption of OER intermediates, favorable for accelerating OER kinetics. Impressively, a Pt/C||Ir-25-Fe16Ni100P64 two-electrode alkaline electrolyzer affords a current density of 10 mA cm(-2) at a low cell voltage of 1.42 V, along with satisfied stability. An AA battery with a nominal voltage of 1.5 V can drive overall water splitting with obvious bubbles released

    Introducing High-Valence Iridium Single Atoms into Bimetal Phosphides toward High-Efficiency Oxygen Evolution and Overall Water Splitting

    No full text
    Single atoms are superior electrocatalysts having high atomic utilization and amazing activity for water oxidation and splitting. Herein, this work reports a thermal reduction method to introduce high-valence iridium (Ir) single atoms into bimetal phosphide (FeNiP) nanoparticles toward high-efficiency oxygen evolution reaction (OER) and overall water splitting. The presence of high-valence single Ir atoms (Ir4+) and their synergistic interaction with Ni3+ species as well as the disproportionation of Ni3+ assisted by Fe collectively contribute to the exceptional OER performance. In specific, at appropriate Ir/Ni and Fe/Ni ratios, the as-prepared Ir-doped FeNiP (Ir-25-Fe16Ni100P64) nanoparticles at a mass loading of only 35 mu g cm(-2) show the overpotential as low as 232 mV at 10 mA cm(-2) and activity as high as 1.86 A mg(-1) at 1.5 V versus RHE for OER in 1.0 m KOH. Computational simulations confirm the vital role of high-valence Ir to weaken the adsorption of OER intermediates, favorable for accelerating OER kinetics. Impressively, a Pt/C||Ir-25-Fe16Ni100P64 two-electrode alkaline electrolyzer affords a current density of 10 mA cm(-2) at a low cell voltage of 1.42 V, along with satisfied stability. An AA battery with a nominal voltage of 1.5 V can drive overall water splitting with obvious bubbles released

    Multi-Dimensional Analysis of Load Characteristics of Electrical Vehicles Based on Power Supply Side Data and Unsupervised Learning Method

    No full text
    This study set out to extract the charging characteristics of an electrical vehicle (EV) from massive real operating data. Firstly, an unsupervised learning method based on self-organizing map (SOM) is developed to deal with the power supply side data of various charging operators. Secondly, a multi-dimensional evaluation index system is constructed for charging operation and vehicle-to-grid (V2G). Finally, according to more than five million pieces of charging operating data collected over a period of two years, the charging load composition and characteristics under different charging station types, daily types and weather conditions are analyzed. The results show that bus, high-way, and urban public charging loads are different in concentration and regulation flexibility, however, they all have the potential to synergy with power grid and cooperate with renewable energy. Especially in an urban area, more than 37 GWh of photovoltaic (PV) power can be consumed by smart charging at the current penetration rate of EVs

    Temperature variations in simulated warming alter photosynthesis of two emergent plants in plateau wetlands, China

    No full text
    Abstract Understanding the impact of temperature variations (i.e., maximum, minimum, and diurnal temperature ranges [DTRs]) on ecosystems is now recognized as being of paramount importance in global change ecology; the roles of different aspects of these temperature variations in influencing plant photosynthesis remain under‐studied. Here, we investigated the photosynthetic responses of two local dominant wetland plants to two simulated air‐warming scenarios (+2° ± 0.5°C and +3.5° ± 0.5°C) by using open‐top chambers in the northwest Yunnan plateau. During the growing season from 2014 to 2016, we explored photosynthetic parameters and the relationships linking photosynthesis to temperature variations. We found that open‐top chambers had increased the daily maximum temperature as well as DTRs. The photosynthetic responses of two plant species to warming were species‐specific during the first two years but species‐independent in the third year. The two warming scenarios did not significantly alter the linear relationships linking maximum net photosynthetic rate (Amax) to stomatal conductance (gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr), despite changes in slopes and intercepts of the fitted lines. The DTRs between 0°C and 30°C were positively correlated with photosynthesis, while DTRs over 30°C were negatively correlated with photosynthesis. Our results provide experimental evidence that temperature variations play a greater role than increasing average temperature in explaining plant photosynthesis, and more attention should be paid to temperature variations when assessing the impact of climate warming on wetland ecosystem

    Table2_The hsp70 new functions as a regulator of reproduction both female and male in Ophraella communa.DOCX

    No full text
    Heat shock proteins (Hsps) function as molecular chaperones that enable organisms to withstand stress and maintain normal life activities. In this study, we identified heat shock protein 70 (encoded by hsp70), which exhibits a higher expression in the mature male testis than in the unmature testis of Ophraella communa. Tissue expression profile revealed that Ochsp70 levels in males were highest in the testis, whereas those in females were highest in the head. Moreover, the expression of Ochsp70 was found to be significantly induced in female bursa copulatrix after mating. Double-stranded RNA dsOchsp70 was injected into males to performance RNA interference, which significantly decreased the male Ochsp70 expression levels within 20 d post-injection, whereas no effect was observed on the Ochsp70 expression level in the females after mating with dsOchsp70-injected males. However, significant downregulation of female fertility was marked simultaneously. Furthermore, knockdown of female Ochsp70 expression also led to a significant reduction in fertility. Finally, comparative transcriptomic analysis identified glucose dehydrogenase and insulin-like growth factor binding protein as putative downstream targets of Ochsp70. Overall, we deduced that Ochsp70 is an indispensable gene and a potential male mating factor in O. communa, which regulates reproduction.</p

    Table1_The hsp70 new functions as a regulator of reproduction both female and male in Ophraella communa.DOC

    No full text
    Heat shock proteins (Hsps) function as molecular chaperones that enable organisms to withstand stress and maintain normal life activities. In this study, we identified heat shock protein 70 (encoded by hsp70), which exhibits a higher expression in the mature male testis than in the unmature testis of Ophraella communa. Tissue expression profile revealed that Ochsp70 levels in males were highest in the testis, whereas those in females were highest in the head. Moreover, the expression of Ochsp70 was found to be significantly induced in female bursa copulatrix after mating. Double-stranded RNA dsOchsp70 was injected into males to performance RNA interference, which significantly decreased the male Ochsp70 expression levels within 20 d post-injection, whereas no effect was observed on the Ochsp70 expression level in the females after mating with dsOchsp70-injected males. However, significant downregulation of female fertility was marked simultaneously. Furthermore, knockdown of female Ochsp70 expression also led to a significant reduction in fertility. Finally, comparative transcriptomic analysis identified glucose dehydrogenase and insulin-like growth factor binding protein as putative downstream targets of Ochsp70. Overall, we deduced that Ochsp70 is an indispensable gene and a potential male mating factor in O. communa, which regulates reproduction.</p
    corecore