63 research outputs found

    A slope stability analysis for southern Wuchangping tin mine

    Get PDF
    This paper aims to provide a slope stability analysis for the southern part of Wuchangping mine. The methods of limit equilibrium analysis, finite element simulation and neural network were used to study the stability of the southern slope. The preventive measures, such as bolt reinforcement, drainage system and so on were carried out. The results are as follows. The slope angle for the lower slope of moderately weathered granite and slightly weathered granite is recommended as 60°-65°. The slope angle for the layer where locates near the ground of full weathered granite is recommended as 30°-32°. When the thickness of fully weathered granite layer is less than 10 meters, the slope is still stable enough. The angle is recommended as 38°-40°. The results of evaluation and calculation obtained by the neural network are not different from those of the limit equilibrium method and finite element simulation. The neural network can accurately predict slope stability. The conclusions can provide useful reference for similar mines

    Glycation End Products (RAGE) and Promotes Proliferation in ECV304 Cells via the c-Jun N-Terminal Kinases (JNK) Pathway Following Stimulation by Advanced Glycation End-Products In Vitro

    Get PDF
    Abstract: Hyperoside is a major active constituent in many medicinal plants which are traditionally used in Chinese medicines for their neuroprotective, anti-inflammatory and antioxidative effects. The molecular mechanisms underlying these effects are unknown. In this study, quiescent ECV304 cells were treated in vitro with advanced glycation end products (AGEs) in the presence or absence of hyperoside. The results demonstrated that AGEs induced c-Jun N-terminal kinases (JNK) activation and apoptosis in ECV304 cells. Hyperoside inhibited these effects and promoted ECV304 cell proliferation. Furthermore, hyperoside significantly inhibited RAGE expression in AGE-stimulated ECV304 cells, whereas knockdown of RAGE inhibited AGE-induced JNK activation. These results suggested that AGEs may promote JNK activation, leading to viability inhibition of ECV304 cells via the RAGE signaling pathway. These effects could be inhibited by hyperoside. Our findings suggest a novel role for hyperoside in the treatment and prevention of diabetes

    Acceleration and displacement dynamic response laws of a shallow-buried bifurcated tunnel

    Get PDF
    In order to obtain the seismic dynamic laws of the acceleration and displacement of a shallow-buried bifurcated tunnel, the analysis of the numerical simulation was carried out by MIDAS-GTS/NX software. The results of the numerical simulation were verified by a shaking table model test. The results show that: (1) the numerical simulation and shaking table test coincide with each other in terms of variation law and peak value. The results of the numerical simulation are credible. (2) For different tunnel cross-section, the response of acceleration and displacement are significant difference. (3) The seismic response of the small distance tunnel (Section 6) is intense. The seismic response laws of the small distance tunnel are significant difference from other type tunnels. The seismic response of the measuring point at the middle rock column is intense. (4) Along the axis of the tunnel, the displacement of the tunnel firstly increases and then decreases. The displacement of the measuring point at the middle rock column is intense, which is in accordance with the law of the acceleration response. The seismic response laws of the tunnel are significantly affected by the middle rock column. The section structure size has a significant effect on the dynamic response of the tunnel

    Antibody Responses and the Effects of Clinical Drugs in COVID-19 Patients

    Get PDF
    The coronavirus disease 2019 (COVID-19) emerged around December 2019 and have become a global epidemic disease currently. Specific antibodies against SAS-COV-2 could be detected in COVID-19 patients’ serum or plasma, but the clinical values of these antibodies as well as the effects of clinical drugs on humoral responses have not been fully demonstrated. In this study, 112 plasma samples were collected from 36 patients diagnosed with laboratory-confirmed COVID-19 in the Fifth Affiliated Hospital of Sun Yat-sen University. The IgG and IgM antibodies against receptor binding domain (RBD) and spike protein subunit 1 (S1) of SAS-COV-2 were detected by ELISA. We found that COVID-19 patients generated specific antibodies against SARS-CoV-2 after infection, and the levels of anti-RBD IgG within 2 to 3 weeks from onset were negatively associated with the time of positive-to-negative conversion of SARS-CoV-2 nucleic acid. Patients with severe symptoms had higher levels of anti-RBD IgG in 2 to 3 weeks from onset. The use of chloroquine did not significantly influence the patients’ antibody titer but reduced C-reaction protein (CRP) level. Using anti-viral drugs (lopinavir/ritonavir or arbidol) reduced antibody titer and peripheral lymphocyte count. While glucocorticoid therapy developed lower levels of peripheral lymphocyte count and higher levels of CRP, lactate dehydrogenase (LDH), α-Hydroxybutyrate dehydrogenase(α-HBDH), total bilirubin (TBIL), direct bilirubin (DBIL). From these results, we suggested that the anti-RBD IgG may provide an early protection of host humoral responses against SAS-COV-2 infection within 2 to 3 weeks from onset, and clinical treatment with different drugs displayed distinct roles in humoral and inflammatory responses

    RAGE Mediates Accelerated Diabetic Vein Graft Atherosclerosis Induced by Combined Mechanical Stress and AGEs via Synergistic ERK Activation

    Get PDF
    Aims/Hypothesis: Diabetes with hypertension rapidly accelerates vascular disease, but the underlying mechanism remains unclear. We evaluated the hypothesis that the receptor of advanced glycation end products (RAGE) might mediate combined signals initiated by diabetes-related AGEs and hypertension-induced mechanical stress as a common molecular sensor. Methods: In vivo surgical vein grafts created by grafting vena cava segments from C57BL/6J mice into the common carotid arteries of streptozotocin (STZ)-treated and untreated isogenic mice for 4 and 8 weeks were analyzed using morphometric and immunohistochemical techniques. In vitro quiescent mouse vascular smooth muscle cells (VSMCs) with either knockdown or overexpression of RAGE were subjected to cyclic stretching with or without AGEs. Extracellular signalregulated kinase (ERK) phosphorylation and Ki-67 expression were investigated. Results: Significant increases in neointimal formation, AGE deposition, Ki-67 expression, and RAGE were observed in the vein grafts of STZ-induced diabetic mice. The highest levels of ERK phosphorylation and Ki-67 expression in VSMCs were induced by simultaneous stretch stress and AGE exposure. The synergistic activation of ERKs and Ki-67 in VSMCs was significantly inhibited by siRNA-RAGE treatment and enhanced by over-expression of RAGE. Conclusion: RAGE may mediate synergistically increased ERK activation and VSMC proliferation induced by mechanica

    EDDMF: An Efficient Deep Discrepancy Measuring Framework For Full-Reference Light Field Image Quality Assessment

    No full text
    International audienceThe increasing demand for immersive experience has greatly promoted the quality assessment research of Light Field Image (LFI). In this paper, we propose an efficient deep discrepancy measuring framework for full-reference light field image quality assessment. The main idea of the proposed framework is to efficiently evaluate the quality degradation of distorted LFIs by measuring the discrepancy between reference and distorted LFI patches. Firstly, a patch generation module is proposed to extract spatio-angular patches and sub-aperture patches from LFIs, which greatly reduces the computational cost. Then, we design a hierarchical discrepancy network based on convolutional neural networks to extract the hierarchical discrepancy features between reference and distorted spatio-angular patches. Besides, the local discrepancy features between reference and distorted sub-aperture patches are extracted as complementary features. After that, the angular-dominant hierarchical discrepancy features and the spatial-dominant local discrepancy features are combined to evaluate the patch quality. Finally, the quality of all patches is pooled to obtain the overall quality of distorted LFIs. To the best of our knowledge, the proposed framework is the first patch-based full-reference light field image quality assessment metric based on deep-learning technology. Experimental results on four representative LFI datasets show that our proposed framework achieves superior performance as well as lower computational complexity compared to other state-of-the-art metrics

    PVBLiF: A Pseudo Video-Based Blind Quality Assessment Metric for Light Field Image

    No full text
    Going beyond traditional 2D imaging is not only an emerging trend of imaging technology, but also the key to a more immersive user experience. Light Field Image (LFI) is a typical high-dimensional imaging format, and the quality evaluation of which is very challenging but necessary. In this paper, we propose a novel Pseudo Video-based Blind quality assessment metric for Light Field image (PVBLiF). In contrast to most previous Light Field Image Quality Assessment (LF-IQA) metrics, in which different types of 2D representations derived from LFI are used for quality assessment indirectly, our metric exploits a more intuitive 3D representation, named Pseudo Video Block Sequence (PVBS), to evaluate the perceptual quality of LFI. For this purpose, we first divide the LFI into a massive number of non-overlapping PVBSs, which simultaneously contain spatial and angular information of LFI. Then, we propose a novel network (named PVBSNet) based on Convolutional Neural Networks (CNNs) to extract the spatio-angular features of PVBS and further evaluate the PVBS quality. The proposed PVBSNet consists of four stages: multi-information division, intra-feature extraction, cross-feature fusion, and quality regression. Finally, a Saliency- and Variance-guided Pooling (SVPooling) method is presented to integrate all the PVBS quality into the overall quality of LFI. The proposed PVBLiF metric has been extensively evaluated on three widely-used LFI datasets: Win5-LID, NBU-LF1.0, and SHU. Experimental results demonstrate that our proposed PVBLiF metric outperforms state-of-the-art metrics and is capable of highly approximating the performance of human observers. The source code of PVBLiF is publicly available at https://github.com/ZhengyuZhang96/PVBLiF
    • …
    corecore