28 research outputs found

    Reinforcement Causal Structure Learning on Order Graph

    Full text link
    Learning directed acyclic graph (DAG) that describes the causality of observed data is a very challenging but important task. Due to the limited quantity and quality of observed data, and non-identifiability of causal graph, it is almost impossible to infer a single precise DAG. Some methods approximate the posterior distribution of DAGs to explore the DAG space via Markov chain Monte Carlo (MCMC), but the DAG space is over the nature of super-exponential growth, accurately characterizing the whole distribution over DAGs is very intractable. In this paper, we propose {Reinforcement Causal Structure Learning on Order Graph} (RCL-OG) that uses order graph instead of MCMC to model different DAG topological orderings and to reduce the problem size. RCL-OG first defines reinforcement learning with a new reward mechanism to approximate the posterior distribution of orderings in an efficacy way, and uses deep Q-learning to update and transfer rewards between nodes. Next, it obtains the probability transition model of nodes on order graph, and computes the posterior probability of different orderings. In this way, we can sample on this model to obtain the ordering with high probability. Experiments on synthetic and benchmark datasets show that RCL-OG provides accurate posterior probability approximation and achieves better results than competitive causal discovery algorithms.Comment: Accepted by the Thirty-Seventh AAAI Conference on Artificial Intelligence(AAAI2023

    Stabilization computation for a kind of uncertain switched systems using non-fragile sliding mode observer method

    Get PDF
    A non-fragile sliding mode control problem will be investigated in this article. The problem focuses on a kind of uncertain switched singular time-delay systems in which the state is not available. First, according to the designed non-fragile observer, we will construct an integral-type sliding surface, in which the estimated unmeasured state is used. Second, we synthesize a sliding mode controller. The reachability of the specified sliding surface could be proved by this sliding mode controller in a finite time. Moreover, linear matrix inequality conditions will be developed to check the exponential admissibility of the sliding mode dynamics. After that, the gain matrices designed will be given along with it. Finally, some numerical result will be provided, and the result can be used to prove the effectiveness of the method

    Aircraft route recovery based on distributed integer programming method

    Get PDF
    In order to further promote the application and development of unmanned aviation in the manned field, and reduce the difficulty that airlines cannot avoid due to unexpected factors such as bad weather, aircraft failure, and so on, the problem of restoring aircraft routes has been studied. To reduce the economic losses caused by flight interruption, this paper divides the repair problem of aircraft operation plans into two sub problems, namely, the generation of flight routes and the reallocation of aircraft. Firstly, the existing fixed-point iteration method proposed by Dang is used to solve the feasible route generation model based on integer programming. To calculate quickly and efficiently, a segmentation method that divides the solution space into mutually independent segments is proposed as the premise of distributed computing. The feasible route is then allocated to the available aircraft to repair the flight plan. The experimental results of two examples of aircraft fault grounding and airport closure show that the method proposed in this paper is effective for aircraft route restoration

    A traverse algorithm approach to stochastic stability analysis of Markovian jump systems with unknown and uncertain transition rates

    No full text
    This paper intents to investigate the problem of mean-square stability analysis of Markovian jump systems with generally unknown and uncertain transition rates. Different from pervious works that the transition rates from one mode to others may be partially unknown or uncertain, in this note, the case that the transition rates from one mode to others are totally unknown will be investigated. By means of transition rate estimation, two ways are provided to tackle with the totally unknown case. In general, five cases in the transition rates matrix are studied for the mean-square stability analysis, which almost have covered all types of generally unknown and uncertain transition rates. Simultaneously, corresponding conditions for checking the mean-square stability of the considered Markovian jump systems are developed for the five studied cases. Finally, numerical examples are provided to verify the effectiveness of the proposed results

    Research into an Online Calibration System for the Errors of Voltage Transformers Based on Open–Closed Capacitor

    No full text
    Periodical calibration is necessary to ensure the accuracy and reliability of voltage transformers. The traditional calibration method requires the power to be off, and the calibration period for this method is too long, meaning that problems with the transformer cannot be found in time. In this paper, a voltage transformer error online calibration system based on open–closed capacitors is proposed. Two open–closed capacitors and other auxiliary devices are utilized to construct the standard voltage sensor. The outputs of the open–closed capacitors are compared with each other to realize accurate self-checking. The average value of the output is used as the final output, which can improve the system’s accuracy and reliability. An improved algorithm based on a hybrid convolution window is proposed to extract the fundamental and harmonic signals. Test results show that the variation of the ratio error is less than 0.037%, and the variation of the angle error is less than 0.45’

    Solving the production transportation problem via a deterministic annealing neural network method

    No full text
    The production transportation problem is a famous NP-hard problem which is a challenge to be solved. This study develops a deterministic annealing neural network method based on Lagrange-barrier functions and two neural network models to solve the problem of this kind. According to the problem's formulation, the Lagrange function will be applied to deal with the linear equality constraints. At the same time, the barrier function will be applied to make the solution arrive at the near-global or global optimal solution. For each of the two neural network models, an iterative procedure to optimize the proposed neural network will be developed and the descent direction is obtained. Then two Lyapunov functions corresponding to the two neural network models are proposed. On the basis of the Lyapunov functions, this deterministic annealing neural network method are shown to converge to the stable equilibrium state and be completely stable. Finally, preliminary numerical results on a number of test problems show that the developed method is promising and could be expanded to other similar issues in the real world

    Experimental Characterization of Laser Trepanned Microholes in Superalloy GH4220 with Water-Based Assistance

    No full text
    An experiment using water-assisted millisecond laser trepanning on superalloy GH4220 was carried out, and the effects of pulse energy on the hole entrance morphology, diameter, roundness, cross-section morphology, taper angle, sidewall roughness, and recast layer in air and with water-based assistance were compared and analyzed. The results show that, compared with the air condition, the water-based assistance improved the material removal rate and hole quality, increased the diameter of the hole entrance and exit, increased the hole roundness, decreased the hole taper angle, decreased the hole sidewall roughness, and reduced the recast layer thickness. In addition, under the combined action of water and steam inside the hole, the sidewall surface morphology quality was improved. Compared with the air condition, the spatter around the hole entrance was reduced, but the oxidation phenomenon formed by the thermal effect surrounding the hole entrance with water-based assistance was more obvious. The research provided technical support for the industrial application of millisecond laser drilling

    Robot path planning based on artificial potential field with deterministic annealing

    No full text
    : In the context of motion planning in robotics, the problem of path planning based on artificial potential fields has been examined using different algorithms to avoid trapping in local minima. With this objective, this paper proposes a novel method based on a deterministic annealing strategy to improve the potential field function by introducing a temperature parameter to increase the robot's obstacle avoidance efficiency. The annealing and tempering strategies prevent the robot from being trapped at the local minima and allow it to continue towards its destination. The initial path is optimised using an annealing algorithm to enhance the overall performance. The time, length and success rate of the planned path measures the quality of the solution. Simulation results and comparative experiments demonstrate that the proposed algorithm can solve path planning in different environments. The proposed algorithm is suitable for complex environments with convex or non-convex polygon obstacles

    Time-Delay Luenberger Observer Design for Sliding Mode Control of Nonlinear Markovian Jump Systems via Event-Triggered Mechanism

    No full text
    This paper is focused on the stabilization of Takagi–Sugeno fuzzy model-based Markovian jump systems with the aid of a delayed state observer. Due to network-induced constraints in the communication channel, a delay partition method combined with an event-triggered mechanism is proposed to design the observer. Then, a novel integral sliding surface is designed, based on which sliding mode dynamics is obtained. Further, according to stochastic stability theory, feasible conditions are provided to ensure the sliding mode dynamics and the error dynamics have an H∞ attenuate level γ. The challenge is to deal with the issue that transition rates may be totally unknown. Moreover, an observer-based sliding mode controller is constructed to ensure the finite-time reachability of the predefined sliding surface. Finally, a numerical example based on a robotic manipulator is given to verify the effectiveness of the proposed method
    corecore