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Stabilization computation for a kind of
uncertain switched systems using
non-fragile sliding mode observer
method

Chuan Li1,2, Zhengtian Wu3,4 , Xinyin Xu3, Jinjin Zheng1 and
Chuangyin Dang2

Abstract
A non-fragile sliding mode control problem will be investigated in this article. The problem focuses on a kind of uncertain
switched singular time-delay systems in which the state is not available. First, according to the designed non-fragile obser-
ver, we will construct an integral-type sliding surface, in which the estimated unmeasured state is used. Second, we
synthesize a sliding mode controller. The reachability of the specified sliding surface could be proved by this sliding mode
controller in a finite time. Moreover, linear matrix inequality conditions will be developed to check the exponential
admissibility of the sliding mode dynamics. After that, the gain matrices designed will be given along with it. Finally, some
numerical result will be provided, and the result can be used to prove the effectiveness of the method.
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Introduction

Switched systems have received more and more atten-
tion because of its convenience to model lot of real-
world systems, for example, chemical process systems,
communication systems, and transportation systems.
And switched systems consist of a family of subsys-
tems. These subsystems are governed by a switching
signal.1 In fact, many fundamental results have been
developed not only for switched systems of continuous-
time but also for switched systems of discrete time.2–6

Furthermore, singular systems also have played a sig-
nificant role in practical application. Recently, more
and more attentions have been given to the research of
stability analysis and stabilization for switched singular
systems. As in the previous studies,7–9 the robust expo-
nential admissibility problem is investigated. The prob-
lem is just for a kind of continuous-time uncertain

switched singular systems in which the delay is interval
time-varying; and the study by Zhou et al.,10 which
focused on switched linear continuous-time singular
systems, addressed the stability analysis of the systems.
For more references, readers can refer to previous liter-
ature.11–14
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Since its appearance, sliding mode control (SMC)
has obtained increasing attention in practical applica-
tions for its good property of strong robustness which
has a perfect performance against model uncertainties
(including external disturbances and parameter varia-
tions), good order reduction and transient response in
Choi.15 In the past few years, researcher has put SMC
into those application areas like robot control, electri-
cal motors, and underwater vehicles. As to SMC of
switched systems, also there exist relative works, such
as the study by Wu et al.,16 in which SMC of switched
systems with stochastic perturbation is concerned and
reduced-order sliding mode dynamics is derived; In the
literatures,17–19 SMC of switched delay systems with
nonlinear perturbations has been studied by average
dwell-time method. But notice that few works draw
attention to SMC of switched singular systems, so the
research on switched singular systems’ SMC continues.
Recently, in previous studies,20–23 a weighted sum
method with the input matrices has been applied for
considering the uncertain switched systems’ SMC, and
one common sliding surface has been designed even
though different input matrices exist in the subsystems.
Motivated by this method and the fact mentioned
aforehand, in this research, we will devote to discuss
the SMC problem for a kind of switched singular
systems.

However, the ideal assumption on the exact knowl-
edge of the system state components does not always
set up in real-world systems. In this case, it is impossible
to realize the stability analysis and the implementation
of controllers. And this aroused the issue of observer
design. However, the variations in engineering applica-
tion demonstrated are usually unavoidable. This may
make the control systems’ performance worse, or even
make the systems to be instable. And this leads to an
issue that non-fragile control has obtained much atten-
tion, and lot of constructive results have been developed
with regard to non-fragile control of dynamic sys-
tems.24–28

With regard to above analysis, this article concerns
the non-fragile SMC problem which focuses on a kind
of uncertain switched singular time-delay systems, in
which state is not available. First, a non-fragile obser-
ver has been designed for obtaining the estimated state
components. Then by using the introduced weighted
sum approach, an integral-type sliding surface will be
developed with common input matrix even though each
subsystem has different input matrices. Furthermore,
this article synthesizes an observer-based SMC law
which can prove the reachability of the specified sliding
surface within a limited time. Moreover, the average
dwell time algorithm will gain the sufficient conditions
on the exponential admissibility of the sliding mode
dynamics. The contributions are listed as follows: (1) to
better accommodate the variability of dynamical

systems, no constraints on the full column rank of
input matrices are imposed on switching systems; (2)
dynamics are often affected by nonlinearities, and the
observer-based compensator is designed to attenuate
the influence for stabilization purpose; and (3) the
exponentially stable ability of singular switching system
is achieved by solving the typical minimization prob-
lems on the observer space.

The rest of this article is structured as follows. In the
second section, problem statement and preliminaries
will be given. In next section, the steps of SMC method
are realized by the proposed non-fragile observer, and
linear matrix inequality (LMI) conditions are obtained
to prove the exponential admissibility of the sliding
mode dynamics. An illustrative example will be offered
for demonstrating the effectiveness of the proposed
approaches in the fourth section. Some conclusions will
be given in last section.

Notations

Let matrices have compatible dimensions if their
dimensions are not point out clearly. Let Rn stand for
the -dimensional real space; let Rm 3 n be the m 3 n real
matrix space; and let k�k be its induced matrix norm or
the Euclidean norm of a vector. Given any real sym-
metric matrix, let M.0(\0) denote that the matrix
is positive (negative) definite. Give a vector
x= ½x1x2 � � � xn�T , let xT be its transpose and let sgn(x)
be ½sgn(x1)sgn(x2) � � � sgn(xn)�T . Let I denote an identity
matrix, let diag ( � ) to be a diagonal matrix, let the vec-
tor 1n 2 Rn is the one whose element is all ones, and let
ei 2 Rn to be the vector which is ith standard base. For
a real symmetric matrix, let lmax( � ) to be the maximum
eigenvalue and let lmin( � ) to denote the minimum
eigenvalue. Given rank ( � ) to present the rank of a
matrix, let � stand for a part in a matrix which is
induced by symmetry and let � to be the Kronecker
product.

Problem statement and preliminaries

Give the uncertain switched singular systems as follows

E _x(t)= (As +DAs))x(t)+ (Ats +DAts)x(t � t)
+Bs(u(t)+ fs(x(t)))

y(t)=Csx(t),
x(s)=u(t), t 2 ½�t, 0�

8>><
>>: ð1Þ

where u(t) 2 Rm is the control input, x(t) 2 Rn stands
for the state, and y(t) 2 Rp stands for the system out-
put. Let us assume that the rank(E)= r ł n.
fAs,Ats,Bs,Cs : s 2 Gg stands for a family of known
matrices and DAs and DAts are the parameter uncer-
tainties; all of them depend on the G= f1, 2, . . . , sg
which is a index set. For time t, let s(t) : R! G to be a
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piecewise constant function, which is said to be switch-
ing signal. And the admissible uncertainties DAi,DAti

satisfy the following

½DAi DAti�=Mred1iF1i(t)½H1i H2i�

where M1i, H1i, and H2i are constant matrices known
before. F1i(t) stands for an unknown matrix function
which satisfies F1i(t)

T F1i(t)ł I . Moreover, it is assumed
that the external disturbance fi(x(t)) has a character of
norm bounded, which means that k fi(x(t)) k ł di,
where di is a positive scalar. Without lose of generality
property, the matrix Bs is assumed to be full column
rank, which means that rank (Bi)=m.

In the sequel, let the parameters which are linked
with the ith subsystem to be As ¼D Ai,Ats ¼D Ati,
Bs ¼D Bi,DAs ¼D DAi,DAts ¼D DAti, fs(x(t)) ¼D f (x(t)),Cs

¼D Ci, for each possible value s(t)= i, i 2 G. And the
switching sequence f(io, to), (i1, t1), . . . , (iN , tN ) jik 2 Gg,
in accordance with the switching signal s(t)= ik ,
intends that the ikth subsystem is activated as
t 2 ½tk , tk + 1).

The content of this article could consist the follow-
ing: non-fragile observer-based method is used to con-
duct the SMC problem of system (1). Then, exponential
admissibility of the sliding mode dynamics will be guar-
anteed. Finally, the lemma and definition described as
follows are introduced in this article.

Lemma 1. The H, D, and F(t) stand for real matrices.29

And let F(t) has the character to make FT (t)F(t)ł I set
up. After that, for every e.0, one can obtain

DF(t)H +HT FT (t)DT ł e�1DDT + eHT H

Definition 1. Given any T2.T1.0, we denote Ns to be
the switching number of s(t) among (T1, T2).

30 If

Ns ł N0 +
(T2�T1)

Ts

for N0 ø 0 and Ts.0, one can call Ts to be the average
dwell time. We let N0 equal 0. This is widely applied in
the former research.

Definition 2
1. Given any i 2 G, when the pair (E,Ai) is impulse

free and regular, we can say the following

E _x(t)=Aix(t)+Atix(t � t) ð2Þ

to be impulse free and regular.

2. Given any scalars l.0 and r ø 1, if the following

k x(t) k ł r k x(t0) k e�l(t�t0), 8t ø t0

has a solution x(t), then one can say that the equili-
brium x� equals 0 of system (2) is to be exponentially
stable.

3. If singular switching system (2) is impulse free,
regular, and exponentially stable, after that one
can call it to be exponentially admissible.

Non-fragile observer-based SMC

In this part, first, we will design a non-fragile observer.
Then, the first step of SMC is considered, that is, an
integral-type sliding surface will be introduced, which is
based on estimated state; moreover, in the second step
of SMC, we synthesize an SMC law. This law has the
ability to put the state trajectories arrive at the sliding
surface predefined within limited time. Finally, the
exponential admissibility of the sliding mode dynamics
will be studied.

Non-fragile observer

First of all, we propose the non-fragile observer for
equation (1) to be the formulation as follows

E _̂x=Aix̂(t)+Atix̂(t � t)+Bi(u(t)+ v(t))

+Bi(Li +DLi)(y(t)� Cix̂(t))
ð3Þ

where x̂(t) stands for the estimation of the state x(t),
external discontinuous feedback compensation control
is presented by the robust term v(t), which has a good
ability to eliminate the effect of fi(x(t)) that is the non-
linear term, and Li is the observer gain to be deter-
mined. DLi is a perturbed matrix, which is bounded in
the following form

DLi =M2iF2i(t)H3i

where F2i(t) is presented as an matrix which is time-
varying, unknown, and satisfies redFT

2i(t)F2i(t)ł I , and
M2i and H3i stand for constant matrices.

Let e(t)= x(t)� x̂(t), we have the estimation error
system as follows

E _e(t)= (�Ali +DAi � BiDLi)Cie(t)+DAix̂(t)

+ (Ati +DAti)e(t � t)+DAtix̂(t � t)

+Bi(fi(x(t))� vi(t))

ð4Þ

where �Ali =Ai � BiLiCi.

Sliding surface design

The sliding mode function will be introduced as the fol-
lowing formulation

Li et al. 3



s(t)=GiEx̂(t)+GiB
Ðt
t0

Kx̂(t)dt ð5Þ

where Gi is selected to satisfy GiBi, which is nonsingu-
lar for every i 2 G; the matrix K is introduced later in
this article. Here, B is introduced as in Wang et al.13

and described by

B ¼D
Pn

i= 1

aiBi

where ai stands for a parameter which satisfies
a ł ai ł �a, i= 1, 2, . . . , s, in which a and �a both are
known scalars. Then, let

M ¼D 1
2
½B� sa1B1 B� sa2B2 � � �B� sanBs�

V (i) ¼D (Is � 2eie
T
i )� Is,N ¼D 1s � Im

b ¼D maxfjsa� 1j, js�a� 1jg � max
1 ł i ł s

fk Bi kg

V(i) ¼D
V (i) 0

0 1
b
(1� sai)Bi

" #

M¼D M bIn½ �,N ¼D
N

Im

" #

And we have that Bi =B+MV(i)N and V(i)ł 1.

Remark 1. For the introduced matrix B, in each subsys-
tem, it is not necessary that the Bi which is input matrix
is the same. And since Bi has full column rank, the
assumption of GiBi is nonsingular could be easily satis-
fied if Gi =BiX (X.0). Furthermore, considering the
sliding surface in equation (6), we could design a com-
mon sliding surface if we choose a common matrix G
instead of Gi, and this way of selecting sliding surface is
much more flexible than those in the study by Liu
et al.21

According to equation (4), one can obtain

_s(t)=Gi½(Ai +BK)x̂(t)+Atix̂(t � t)�+GiBi(u(t)

+ v(t))+GiBi(Li +DLi)Cie(t)
ð6Þ

In view of sliding mode theory, if the state trajec-
tories arrive at the sliding surface, then s(t)= 0 and
_s(t)= 0. Thus, equivalent control could be gained con-
sequently as follows

ueq(t)=�(GiBi)
�1Gi½(Ai +BK)x̂(t)+Atix̂(t � t)�

�v(t)� (Li +DLi)Cie(t)
ð7Þ

After substituting system (8) into equation (4), one
can gain the sliding mode dynamics

E _̂x= ½Ai � Bi(GiBi)
�1Gi(Ai +BK)�x̂(t)

+ (I � Bi(GiBi)
�1Gi)Atix̂(t � t)

¼D �Akix̂(t)+ �Atix̂(t � t)

ð8Þ

where �Aki = �Ai � �BK, �Ai =(I � �Gi)Ai, �Ati =(I � �Gi)Ati,
�Bi = �GiB, and �Gi =Bi(GiBi)

�1Gi.

SMC law synthesis

In order to guarantee reachability of the sliding surface,
we will synthesize an SMC law in this part. Finally, the
sliding mode controller has been developed which has
the following formulation

u(t)=�(GiBi)
�1Gi½(Ai +BK)x̂(t)+Atix̂(t � t)�

�Li(y(t)� Cix̂(t))

�( k E2i kk H3iCie(t) k + ji + di + ki)sgn((GiBi)
T s(t))

ð9Þ

and the v(t), which is the robust term in equation (4),
has been designed as follows

v(t)= (ji + di)sgn(Xi(y(t)� Cix̂(t)) ð10Þ

where ji and ki stand for positive scalars, as well as the
X is to be introduced in Theorem 2 later.

The following theorem is to analyze the reachability
of the sliding surface s(t)= 0.

Theorem 1. Let Assumption 1 setting up under the
switched systems (1). When the SMC law is developed
as equations (9)–(10) for the designed sliding function
(6), the state trajectory could be arrived at the specified
sliding surface s(t)= 0 within a limited time.

Proof 1. Select the following Lyapunov functional

V (t)= 1
2

sT (t)s(t) ð11Þ

Therefore, it holds from system (6) to satisfy

_V (t)= sT (t)½Gi(Ai +BK)x̂(t)+GiAtix̂(t � t)

+GiBi(u(t)+ v(t))+GiBi(Li +DLi)Cie(t)�
ð12Þ

By substituting equations (9) and (10) into equation
(12), one can obtain

_V (t)= sT (t)GiBi½�( k E2i kk H3iCie(t) k + ji + di

+ ki)sgn((GiBi)
T s(t)+ v(t)+DLiCie(t)�

ł� ki k GiBi kk s(t) k

This implies that the state trajectories could arrive at
the switching surface predefined within a limited time.
It is completes this proof.
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Sliding mode dynamics analysis

Theorem 2. Let switched singular systems (1) satisfy
Assumption 1. Let g.0, if Pi.0, 0\Qj\bI

(j= 1, 2,b.0), Xi, Wi with appropriate dimensions as
well as positive scalars eji.0(j= 1, 2) and ci.0, so the
following LMI is satisfied for every i 2 G

Y1i Yi
�Ati + e1iH

T
1iH2i 0

� �Q1 + e1iH
T
2iH2i 0

� � Y2i

� � �
� � �
� � �

2
6666664

0 0 0

0 0 0

YiAti + e1iH
T
1iH2i YiM1i YiBiM2i

�Q2 + e1iH
T
2iH2i 0 0

� �e1iI 0

� � �e2iI

3
7777775
\0

ð13Þ

with

BT
i Y T

i = ciXiCi ð14Þ

where R 2 Rn 3 (n�r) stands for any matrix with full col-
umn which satisfies ET R= 0, Yi =ET Pi +WiR

T and

Y1i =Yi
�Aki + �AT

kiY
T
i + gET PiE+ tgbI + e1iH

T
1iH1i

Y2i =Yi
~Ali + ~AT

li Y
T
i + gET PiE+ tgbI

+ e1iH
T
1iH1i + e2iC

T
i HT

3iH1iCi

Then, the closed-loop system is called exponentially
admissible having average dwell time Ts. ln m=g and
the parameter

m= max
i, j2G, i 6¼j

lmax(Pi)

lmin(Pj)
ð15Þ

Moreover, the norm of h(t)= ½xT eT (t)�T obeys

k s(t) k ł he�lt k z(t0) k ð16Þ

where

l=
1

2
g � lnm

Ts

� �
,h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b+ tb

a

r
ø 1

a= min
i2G
flmin(E

T PiE)g, b= max
i2G
flmax(E

T PiE)g

ð17Þ

Proof 2. First, we will prove that the sliding mode
dynamics (8) and the error system (4) are impulse free
and regular. Because rank(E)= r ł n, two nonsingular
matrices L and H exist, which satisfy

LEH =
Ir 0

0 0

� �
ð18Þ

Then

R= LT 0

I

� �
N

Now, denote

L�AkiH =
A1i A2i

A3i A4i

� �
, L�T PiL

�1 =
P1i P2i

P3i

� �

HT Wi =
W1i

W2i

� �

It can be found from Y1i\0 that

(ET Pi +WiR
T )Aki +AT

ki(E
T Pi +WiR

T )T\0 ð19Þ

After that, pre-multiplying equation (19) by HT
i and

post-multiplying equation (19) by Hi, one can obtain

AT
4iNW T

2i +W2iN
T A4i\0 ð20Þ

which means A4i is nonsingular. Thus, the pair (Ei,Ai)
is impulse free and regular. By definition 2, the sliding
mode dynamics is impulse free and regular. It is similar
to the error system (4).

Next, we will prove the considered systems’ exponen-
tial stability. According to the closed-loop system, we
select the following Lyapunov functional

Vi(t)= x̂T (t)ET PiEx̂(t)+
Ðt

t�t

x̂(s)Q1x̂(s)ds

+ eT (t)ET PiEe(t)+
Ðt

t�t

e(s)Q2e(s)ds

ð21Þ

Thus, along the solution of systems (4) and (8), we
have

_V i(t)= 2x̂T (t)(ET Pi +WiR
T )½�Akix̂(t)+ �Atix̂(t � t)�

+ x̂T (t)Q1x̂(t)� x̂T (t � t)Q1x̂(t � t)

+ 2eT (t)(ET Pi +WiR
T )½(�Ali +DAi � BiDLiCi)e(t)�

+DAix̂(t)+ (Ati +DAti)e(t � t)

+DAtix̂(t � t)+Bi(fi(x(t))� vi(t))

+ eT (t)Q2e(t)� eT (t � t)Q2e(t � t)

ð22Þ

In view of Lemma 1, one further has for ei1.0 and
ei2.0

2eT (t)(ET Pi +WiR
T )½DAie(t)+DAix̂(t)

+DAtie(t � t)+DAtix̂(t � t)�

ł e�1
1i eT (t)(ET Pi +WiR

T )M1iM
T
1i(E

T Pi +WiR
T )T e(t)

+ e1i½H1ix̂(t)+H2ix̂(t � t)

+H1ie(t)+H2ie(t � t)�T ½H1ix̂(t)+H2ix̂(t � t)

+H1ie(t)+H2ie(t � t)�
ð23Þ

Li et al. 5



�2eT (t)(ET Pi +WiR
T )BiDLiCie(t)

ł e�1
2i eT (t)(ET Pi +WiR

T )BiM2iM
T
2iB

T
i (E

T Pi +WiR
T )

T
e(t)

+ e2ie
T (t)CT

i HT
i2Hi2Cie(t)

ð24Þ

By means of equations (10) and (14), we have that

eT (t)(ET Pi +WiR
T )Bi(fi(x(t))� vi(t))

= eT (t)CT
i Xi(fi(x(t))� vi(t))

ł� (1+ c2i)ji k Xi((y(t))� Cix̂(t)) k \0

ð25Þ

So combining equations (22)–(25), it yields

_Vi(t)+ gVi(t)ł zT (t)Ciz(t) ð26Þ

where z(t)= ½x̂T (t) x̂T (t � t) eT (t) eT (t � t)�T and

Ci =

~Y1i (ET Pi +WiR
T )Ati + e1iH

T
1iH2i

� �Q1 + e1iH
T
2iH2i

� �
� �

2
6664

0 0

0 0

~Y2i (ET Pi +WiR
T )Ati + e1iH

T
1iH2i

� �Q2 + e1iH
T
2iH2i

3
7775

~Y1i =(ET Pi +WiR
T )�Aki + �AT

ki(E
T Pi +WiR

T )T + gET PiE + tgbI + e1iH
T
1iH1i

~Y2i =(ET Pi +WiR
T )�Ali + �AT

li (E
T Pi +WiR

T )T + gET PiE+ tgbI + e1iH
T
1iH1i + e2iC

T
i HT

3iH1iCi

+ e�1
1i YiM1iM

T
1iY

T
i + e�1

2i YiBiM1iM
T
1iB

T
i Y T

i

Then, employing Schurs’ complement, it can be seen
that Xi is nonsingular and Ci\0 is implied by equation
(13). According to equation (26), one can obtain

_Vi(t)ł� gVi(t)

Therefore, there holds

Vi(t)ł e�g(t�t0)Vi(t0) ð27Þ

which has a mean that each closed-loop system’s sub-
system has the exponentially stable character.

Let tk , where k 2 f1, 2, . . . ,Nsg is the switching
instant. Therefore, one can obtain s(t�k )= j and
s(t+k )= i. From equations (15) and (27), one can get

Vi(t)ł e�g(t�tk )Vi(tk), and Vi(tk)ł mVj(t
�
k ) ð28Þ

Let Ns(t0, t)ł N0 +(t � t0)=Ts. From equation (28),
one can obtain

Vi(t)ł e�g(t�tk )mVj(t
�
k )

..

.

ł e�g(t�t0)mNs(t0, t)Vs(t0)(t0)
ł e(�g�lnm=Ts)(t�t0)Vs(t0)(t0)

ð29Þ

Considering equation (21), we know that

a k h(t)k2 ł Vi(t), and Vs(t0)(t0)ł (b+ tb) k h(t0)k2

ð30Þ

which together with equations (29) and (30) yields

k h(t)k2 ł
1

a
Vi(t)ł

b+b

a
e(�g�lnm=Ts)(t�t0) k h(t0)k2

ð31Þ

According to equations (17) and (31), one can see
that the closed-loop system has the exponentially stable
character. This proof is completed.

In order to develop sliding mode controller and non-
fragile observer, the observer gain Li in equation (3)
and the sliding mode gain in equation (5) should be
given in advance. To this end, we draw out the results
as follows.

Theorem 3. Consider the switched systems (1)–(2) sat-
isfy Assumption 1. Let scalar g.0, if there exist Pi.0,
0\Qj\bI(j= 1, 2), Xi, �Kl

�Li, Wi having appropriate
dimensions and positive scalars eji.0, j= 1, 2 and
ci.0, such that the LMIs as follows set up for every
i 2 G

F1i Yi
�Ati + e1iH

T
1iH2i 0

� �Q1 + e1iH
T
2iH2i 0

� � F2i

� � �
� � �
� � �

2
6666664

0 0 0

0 0 0

YiAti + e1iH
T
1iH2i YiM1i YiBiM2i

�Q2 + e1iH
T
2iH2i 0 0

� �e1iI 0

� � �e2iI

3
7777775
\0 ð32Þ

and

BT
i Y T

i = ciXiCi ð33Þ

where
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F1i = Yi
�Ai + �AT

i Y T
i � �Kl � �KT

l + gET PiE

+ tgbI + e1iH
T
1iH1i

F2i = YiAi +AT
i Y T

i � �LiCi � CT
i

�LT
i

+ gET PiE + tgbI + e1iH
T
1iH1i + e2iC

T
i HT

3iH3iCi

and the average dwell time

Tm.
lnm

g
ð34Þ

For arbitrary switching signal s(t), the closed-loop
system has a exponentially stable ability. The other
notions are defined in Theorem 2. Moreover, the slid-
ing mode gain is presented by K = �B+Y�1

l
�Kl, and the

non-fragile observer gain is denoted by Li =B+
i Y�1

i
�Li,

where B+ and B+
i are the Moore–Penrose inverse of

matrices B and Bi, respectively.

Proof 3. In the proof of Theorem 2, noting that l 2 G

such that Yl
�BK ł Yi

�BK for any i 2 G. Also, we have
confirmed that Yi is nonsingular in Theorem 1, so let-
ting Yl

�BK = �Kl and YiBiLi = �Li, we could easily have
that equation (32) guarantees equation (13) holds.

Remark 2. Noting that the conditions proposed in
above theorems exist linear matrix equality, which
could not get a solution using MATLAB’s LMI-
Toolbox directly. In order to solve these problems,
equation (14) is replaced by the equivalent forms as
follows:

trace½(BT
i Y T

i � ciXiCi)
T (BT

i Y T
i � ciXiCi)�= 0 ð35Þ

So, there is a positive scalar d.0 to satisfy

(BT
i Y T

i � ciXiCi)
T (BT

i Y T
i � ciXiCi)\dI ð36Þ

By Schur complement, equation (36) is equal to

�dI (BT
i Y T

i � ciXiCi)
T

� �I

� �
\0 ð37Þ

So, the non-fragile observer-based SMC control
problem has been transformed into solving a global
solution of the following problem, which is a typical
minimization problem

min d, subject to equations (32) and (37)

Numerical simulation

Let the switched singular system (1) with N = 2 as well
as parameters as follows.

For i= 1, the system’s dynamics are introduced as
follows

A1 =
2:5 0

�0:1 �4:5

� �
,At1 =

1:1 1:3

0:8 0:7

� �
,

B1 =
1:5

1

� �
,C1 = ½0:5 � 1�

M11 =
0:1 0:3

0 �0:1

� �
,H11 =

�0:1 0

0:1 �0:3

� �
,

H21 =
0 0:5

1 0:2

� �
,M21 = 0:5,H31 =� 0:1

For i= 2, the system’ dynamics are introduced as

A2 =
5:5 �1:3

0:5 �2:3

� �
,At2 =

�1:2 0:9

0:5 1:1

� �
,

B2 =
�1:3

2

� �
,C2 = ½0:5 0:8�

M12 =
�0:1 0

0:2 �0:1

� �
,H12 =

�0:1 �0:1

0:1 �0:1

� �
,

H22 =
0:3 �0:2

0 0:2

� �
,M22 = 0:2,H32 = 0:1

The E is assumned to be

E=
1 2

2 4

� �

Moreover, t and g are selected as t = 0:4 and
g = 4:5, and f1(t)= f2(t)= e�t sin t. The tuning scalars
ci = 1(i= 1, 2). By solving LMI (32) and (37) using
Matlab, one feasible solution is given as follows with
Gi =BT

i (i= 1, 2), a1 =a2 = 0:5

e11 = 0:4619, e21 = 5:2108, e12 = 1:3772, e22 = 5:1765

b= 2:0322

Q1 =
1:3782 �0:0092

�0:0092 1:3304

� �

Q2 =
0:7603 �0:0138

�0:0138 0:7583

� �

P1 =
4:2143 �2:0166

�2:0166 1:1895

� �

P2 =
4:2182 �2:0088

�2:0088 1:2050

� �

Kl =
6:3412 57:7274

�50:0193 17:0393

� �

Y1 =
�2:1726 3:3949

�0:7685 1:3085

� �

Y2 =
�0:5558 �0:6125

0:1697 0:3243

� �

L1 =
2:8205

�9:0601

� �
, L2 =

7:3497

18:4432

� �
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So according to Theorem 1, we could have

m= max
i, j2G, i 6¼j

lmax(Pi)

lmin(Pj)
= 28:8223

Furthermore, the average dwell time

Tm.
lnm

g
= 0:2076

Thus, we could choose the average dwell time
Tm = 0:25.

Then, controller in equation (9) is given by

u(t)=

½180:8189 12:2915�x(t)
�½0:7538 0:8154�x(t � 0:4)

+ 96:7937(y(t)� ½0:5 � 1�x(t))
�( k �0:05(y(t)� ½0:5 � 1�x(t)) k
+ j1 + d1 + k1)sgn((G1B1)

T s(t)); i= 1;

½179:6441 12:2117�x(t)
�½0:4499 0:1801�x(t � 0:4)

�93:9272(y(t)� ½0:5 0:8�x(t))
�( k 0:02(y(t)� ½0:5 0:8�x(t)) k
+ j2 + d2 + k2)sgn((G2B2)

T s(t)): i= 2

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

Figure 1. Switching signal with average dwell time Tm ø 0:25.

Figure 2. State response of x(t).
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For simulation purpose, let the initial conditions
x(t)= x̂(t)= ½3 � 4�T for all t 2 ½�0:4, 0�. And the
adjustable scalars j1 = j2 = 0:8 and k1 = k2 = 1. The
simulation numerical results can be obtained from
Figures 1 to 4. Figure 1 plots the switching signals;
Figures 2 and 3 give the state response of the original
system and the observer system, respectively; and the
control input is shown by Figure 4.

Conclusion

This research has discussed the non-fragile SMC of
uncertain switched singular systems which is with time
delay. Since system states are not available, we have
designed a non-fragile observer at first; second, a

switched integral-type sliding surface has been con-
structed according to the estimated states, and this
method could be extended to develop other common
sliding surface for the benefit of the introduced input
matrices’ weighted sum. Third, an SMC law has been
synthesized in order to make sure the reachability of
sliding surface. Furthermore, the exponential admissi-
bility of the closed-loop system could be proved using a
minimization problem along with LMI conditions.
Finally, a numerical result has been presented to
demonstrate the effectiveness of the method.
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Figure 3. State response of x̂(t).

Figure 4. Control input u(t).
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