70 research outputs found

    Investigating the Transition Region Explosive Events and Their Relationship to Network Jets

    Full text link
    Recent imaging observations with the Interface Region Imaging Spectrograp (IRIS) have revealed prevalent intermittent jets with apparent speeds of 80--250 km~s−1^{-1} from the network lanes in the solar transition region (TR). On the other hand, spectroscopic observations of the TR lines have revealed the frequent presence of highly non-Gaussian line profiles with enhanced emission at the line wings, often referred as explosive events (EEs). Using simultaneous imaging and spectroscopic observations from IRIS, we investigate the relationship between EEs and network jets. We first identify EEs from the Si~{\sc{iv}}~1393.755 {\AA} line profiles in our observations, then examine related features in the 1330 {\AA} slit-jaw images. Our analysis suggests that EEs with double peaks or enhancements in both wings appear to be located at either the footpoints of network jets, or transient compact brightenings. These EEs are most likely produced by magnetic reconnection. We also find that EEs with enhancements only at the blue wing are mainly located on network jets, away from the footpoints. These EEs clearly result from the superposition of the high-speed network jets on the TR background. In addition, EEs showing enhancement only at the red wing of the line are often located around the jet footpoints, possibly caused by the superposition of reconnection downflows on the background emission. Moreover, we find some network jets that are not associated with any detectable EEs. Our analysis suggests that some EEs are related to the birth or propagation of network jets, and that others are not connected to network jets.Comment: 9 figures; to appear in Ap

    Ti4O7/g-C3N4 for Visible Light Photocatalytic Oxidation of Hypophosphite: Effect of Mass Ratio of Ti4O7/g-C3N4

    Get PDF
    Hypophosphite wastewater treatment is still a critical issue in metallurgical processes and the oxidation of hypophosphite to phosphate followed by the precipitation of phosphate is an important strategy for hypophosphite wastewater treatment. Herein, Ti4O7/g-C3N4 photocatalysts with various mass ratios (Ti4O7 (m): g-C3N4 (m) = 0.5, 0.2, 0.1, and 0.05) were synthesized by a hydrolysis method and the effect of the mass ratio of Ti4O7 (m): g-C3N4 (m) on Ti4O7/g-C3N4 visible light photocatalytic oxidation of hypophosphite was evaluated. The as-prepared Ti4O7/g-C3N4 were characterized and confirmed by SEM, XPS, XRD and FTIR. Moreover, the specific surface area and the distribution of pore size of Ti4O7/g-C3N4 was also analyzed. Our results showed that Ti4O7/g-C3N4 exhibited remarkably improved photocatalytic performance on hypophosphite oxidation compared with g-C3N4 and meanwhile 1:2-Ti4O7/g-C3N4 with a mass ratio of 0.5 showed the best photocatalytic performance with the highest oxidation rate constant (17.7-fold and 91.0-fold higher than that of pure g-C3N4 and Ti4O7, respectively). The enhanced performance of photocatalytic oxidation of hypophosphite was ascribed to the heterojunction structure of Ti4O7/g-C3N4 with broader light absorption and significantly enhanced efficiency of the charge carrier (e−-h+) generation and separation. Additionally, the generated ·OH and ·O2- radicals contributed to the hypophosphite oxidation during the photocatalytic system

    Nitrogen-doped carbon nanospheres-modified graphitic carbon nitride with outstanding photocatalytic activity

    Get PDF
    Metals and metal oxides are widely used as photo/electro-catalysts for environmental remediation. However, there are many issues related to these metal-based catalysts for practical applications, such as high cost and detrimental environmental impact due to metal leaching. Carbon-based catalysts have the potential to overcome these limitations. In this study, monodisperse nitrogen-doped carbon nanospheres (NCs) were synthesized and loaded onto graphitic carbon nitride (g-C3N4, GCN) via a facile hydrothermal method for photocatalytic removal of sulfachloropyridazine (SCP). The prepared metal-free GCN-NC exhibited remarkably enhanced efficiency in SCP degradation. The nitrogen content in NC critically influences the physicochemical properties and performances of the resultant hybrids. The optimum nitrogen doping concentration was identified at 6.0 wt%. The SCP removal rates can be improved by a factor of 4.7 and 3.2, under UV and visible lights, by the GCN-NC composite due to the enhanced charge mobility and visible light harvesting. The mechanism of the improved photocatalytic performance and band structure alternation were further investigated by density functional theory (DFT) calculations. The DFT results confirm the high capability of the GCN-NC hybrids to activate the electron–hole pairs by reducing the band gap energy and efficiently separating electron/hole pairs. Superoxide and hydroxyl radicals are subsequently produced, leading to the efficient SCP removal

    Solar Ring Mission: Building a Panorama of the Sun and Inner-heliosphere

    Full text link
    Solar Ring (SOR) is a proposed space science mission to monitor and study the Sun and inner heliosphere from a full 360{\deg} perspective in the ecliptic plane. It will deploy three 120{\deg}-separated spacecraft on the 1-AU orbit. The first spacecraft, S1, locates 30{\deg} upstream of the Earth, the second, S2, 90{\deg} downstream, and the third, S3, completes the configuration. This design with necessary science instruments, e.g., the Doppler-velocity and vector magnetic field imager, wide-angle coronagraph, and in-situ instruments, will allow us to establish many unprecedented capabilities: (1) provide simultaneous Doppler-velocity observations of the whole solar surface to understand the deep interior, (2) provide vector magnetograms of the whole photosphere - the inner boundary of the solar atmosphere and heliosphere, (3) provide the information of the whole lifetime evolution of solar featured structures, and (4) provide the whole view of solar transients and space weather in the inner heliosphere. With these capabilities, Solar Ring mission aims to address outstanding questions about the origin of solar cycle, the origin of solar eruptions and the origin of extreme space weather events. The successful accomplishment of the mission will construct a panorama of the Sun and inner-heliosphere, and therefore advance our understanding of the star and the space environment that holds our life.Comment: 41 pages, 6 figures, 1 table, to be published in Advances in Space Researc

    Capacitative deionization using commercial activated carbon fiber decorated with polyaniline

    No full text
    Capacitive deionization (CDI) has become a promising technology for water desalination due to its remarkable advantages including low operation cost, no secondary pollution and high rate of ion recovery. However, the majority of commercial CDI electrode materials are carbonaceous materials such as activated carbon with limited capacitance and high charge transfer resistance, which significantly hinders the wide application of CDI. Herein, we demonstrate a N-doped carbonaceous CDI electrode with a maximum ion electrosorption capacity of 19.9 mg/g, a low charge transfer resistance (1.17 Ω) and a robust regeneration performance (2800 min for 28 circles). The N-doped carbonaceous CDI electrode is the commercial activated carbon fiber (ACF) decorated with polyaniline (PANI) (ACF/PANI) electrode fabricated by in-situ electrochemical polymerization. The ACF/PANI electrode was characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The pseudocapacitance of ACF/PANI electrode significantly contributed to the effectively improved CDI performance that 90.0% of sodium storage was attributed to the capacitive process and the unique porous structure of ACF/PANI electrode contributed to the other 10.0% diffusion-controlled capacity

    Ti4O7/g-C3N4 Visible Light Photocatalytic Performance on Hypophosphite Oxidation: Effect of Annealing Temperature

    No full text
    The oxidation of hypophosphite to phosphate is the key to recover the phosphorus resource from the hypophosphite wastewater. In the present work, Ti4O7/g-C3N4 composites were synthesized at two different temperatures (100 and 160°C) and their performance on photocatalytic oxidation of hypophosphite under visible light irradiation and the corresponding mechanism were evaluated. A hydrolysis method using g-C3N4 and Ti4O7 was applied to synthesize the Ti4O7/g-C3N4 composites with their hybrid structure and morphology confirmed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectra (XPS). The annealing temperature significantly affected the photocatalytic performance of Ti4O7/g-C3N4 that the 160-Ti4O7/g-C3N4 composite (fabricated at 160°C) showed the highest oxidation efficiency of hypophosphite of 81% and the highest photocatalytic oxidation rate of 0.467 h−1 comparing with the 100-Ti4O7/g-C3N4 composite (fabricated at 100°C) and pure g-C3N4. The enhanced photocatalytic performance of 160-Ti4O7/g-C3N4 could be ascribed to the effective charge separation and enhanced photoabsorption efficiency. Additionally, electron spin resonance (ESR) results showed that hydroxyl radicals and superoxide anion radicals were mainly responsible to the oxidation of hypophosphite with superoxide anion radicals accounting for a more significant contribution. Moreover, Ti4O7/g-C3N4 photocatalysts showed the remarkable stability in the repetitive experiments

    Capacitive deionization with nitrogen-doped highly ordered mesoporous carbon electrodes

    No full text
    As a promising desalination method, capacitive deionization (CDI) is capable of addressing the issues of water resource shortage and water environment pollution. However, the electrode materials with high electrochemical conductivity and salt adsorption capacity are very important for CDI applications. Herein, nitrogen-doped highly ordered mesoporous carbon (NOMC) samples with mesochannels were synthesized by a self-assembly method and adopted as the CDI electrode material with a remarkable electrosorption capacity of 26.2 mg/g (significantly higher than those of nitrogen-doped carbon electrodes reported in the literature) and an excellent regeneration performance after consecutive electrosorption-desorption cycles. The structural and electrochemical properties of NOMC were fully analyzed that NOMC showed a hierarchically porous structure with a large number of mesochannels and demonstrated a significant improvement of hydrophilicity and electrochemical conductivity. The superior desalination performance of the NOMC electrodes was mainly owing to the enhanced pseudocapacitance induced after nitrogen doping with the capacitive contribution of 82.13% including the pseudocapacitance and the diffusion-controlled contribution of 17.87%.</p
    • …
    corecore