212 research outputs found

    An application review of dielectric electroactive polymer actuators in acoustics and vibration control

    No full text
    Recent years have seen an increasing interest in the dielectric electroactive polymers (DEAPs) and their potential in actuator applications due to the large strain capabilities. This paper starts with an overview of some configurations of the DEAP actuators and follows with an in-depth literature and technical review of recent advances in the field with special considerations given to aspects pertaining to acoustics and vibration control. Significant research has shown that these smart actuators are promising replacement for many conventional actuators. The paper has been written with reference to a large number of published papers listed in the reference section

    2D perovskite stabilized phase-pure formamidinium perovskite solar cells.

    Get PDF
    Compositional engineering has been used to overcome difficulties in fabricating high-quality phase-pure formamidinium perovskite films together with its ambient instability. However, this comes alongside an undesirable increase in bandgap that sacrifices the device photocurrent. Here we report the fabrication of phase-pure formamidinium-lead tri-iodide perovskite films with excellent optoelectronic quality and stability. Incorporation of 1.67 mol% of 2D phenylethylammonium lead iodide into the precursor solution enables the formation of phase-pure formamidinium perovskite with an order of magnitude enhanced photoluminescence lifetime. The 2D perovskite spontaneously forms at grain boundaries to protect the formamidinium perovskite from moisture and suppress ion migration. A stabilized power conversion efficiency (PCE) of 20.64% (certified stabilized PCE of 19.77%) is achieved with a short-circuit current density exceeding 24 mA cm-2 and an open-circuit voltage of 1.130 V, corresponding to a loss-in-potential of 0.35 V, and significantly enhanced operational stability

    Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells.

    Get PDF
    Manipulation of grain boundaries in polycrystalline perovskite is an essential consideration for both the optoelectronic properties and environmental stability of solar cells as the solution-processing of perovskite films inevitably introduces many defects at grain boundaries. Though small molecule-based additives have proven to be effective defect passivating agents, their high volatility and diffusivity cannot render perovskite films robust enough against harsh environments. Here we suggest design rules for effective molecules by considering their molecular structure. From these, we introduce a strategy to form macromolecular intermediate phases using long chain polymers, which leads to the formation of a polymer-perovskite composite cross-linker. The cross-linker functions to bridge the perovskite grains, minimizing grain-to-grain electrical decoupling and yielding excellent environmental stability against moisture, light, and heat, which has not been attainable with small molecule defect passivating agents. Consequently, all photovoltaic parameters are significantly enhanced in the solar cells and the devices also show excellent stability

    Nanoparticle delivery of CDDO-Me remodels the tumor microenvironment and enhances vaccine therapy for melanoma

    Get PDF
    Lipid-calcium-phosphate nanoparticle (NP) delivery of Trp2 peptide vaccine is one of the most effective vaccine strategies against melanoma. However, due to the immunosuppressive microenvironment in the tumor, the achievement of potent immune responses remains a major challenge. NP delivery systems provide an opportunity to deliver chemotherapy agent to modulate the tumor microenvironment (TME) and improve the vaccine activity. Anti-inflammatory triterpenoid methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) is a broad spectrum inhibitor of several signaling pathways that are important in both cancer cells and cells in the TME. Intravenous delivery of CDDO-Me using poly-lactic-glycolic-acid NP combination with subcutaneous Trp2 vaccine resulted in an increase of antitumor efficacy and apoptotic tumor tissue than Trp2 vaccine alone in B16F10 melanoma. There was a significant decrease of both Treg cells and MDSCs and a concomitant increase in the cytotoxic T-lymphocyte infiltration in TEM of the vaccinated animals. Also, CDDO-Me remodeled the tumor associated fibroblasts, collagen and vessel in TME, meanwhile, enhanced the Fas signaling pathway which could sensitize the tumor cells for cytotoxic T lymphocyte mediated killing. The combination of systemic induction of antigen-specific immune response using Trp2 nanovaccine and targeted modification of the TME with the NP delivered CDDO-Me offers a powerful combination therapy for melanoma

    TiAVox: Time-aware Attenuation Voxels for Sparse-view 4D DSA Reconstruction

    Full text link
    Four-dimensional Digital Subtraction Angiography (4D DSA) plays a critical role in the diagnosis of many medical diseases, such as Arteriovenous Malformations (AVM) and Arteriovenous Fistulas (AVF). Despite its significant application value, the reconstruction of 4D DSA demands numerous views to effectively model the intricate vessels and radiocontrast flow, thereby implying a significant radiation dose. To address this high radiation issue, we propose a Time-aware Attenuation Voxel (TiAVox) approach for sparse-view 4D DSA reconstruction, which paves the way for high-quality 4D imaging. Additionally, 2D and 3D DSA imaging results can be generated from the reconstructed 4D DSA images. TiAVox introduces 4D attenuation voxel grids, which reflect attenuation properties from both spatial and temporal dimensions. It is optimized by minimizing discrepancies between the rendered images and sparse 2D DSA images. Without any neural network involved, TiAVox enjoys specific physical interpretability. The parameters of each learnable voxel represent the attenuation coefficients. We validated the TiAVox approach on both clinical and simulated datasets, achieving a 31.23 Peak Signal-to-Noise Ratio (PSNR) for novel view synthesis using only 30 views on the clinically sourced dataset, whereas traditional Feldkamp-Davis-Kress methods required 133 views. Similarly, with merely 10 views from the synthetic dataset, TiAVox yielded a PSNR of 34.32 for novel view synthesis and 41.40 for 3D reconstruction. We also executed ablation studies to corroborate the essential components of TiAVox. The code will be publically available.Comment: 10 pages, 8 figure

    The Lesson Learned from the Unique Evolutionary Story of Avirulence Gene AvrPii of Magnaporthe oryzae

    Get PDF
    Blast, caused by Magnaporthe oryzae, is one of the most destructive diseases affecting rice production. Understanding population dynamics of the pathogen's avirulence genes is pre-required for breeding and then deploying new cultivars carrying promising resistance genes. The divergence and population structure of AvrPii was dissected in the populations of southern (Guangdong, Hunan, and Guizhou) and northern (Jilin, Liaoning, and Heilongjiang) China, via population genetic and evolutionary approaches. The evolutionary divergence between a known haplotype AvrPii-J and a novel one AvrPii-C was demonstrated by haplotype-specific amplicon-based sequencing and genetic transformation. The different avirulent performances of a set of seven haplotype-chimeric mutants suggested that the integrity of the full-length gene structures is crucial to express functionality of individual haplotypes. All the four combinations of phenotypes/genotypes were detected in the three southern populations, and only two in the northern three, suggesting that genic diversity in the southern region was higher than those in the northern one. The population structure of the AvrPii family was shaped by balancing, purifying, and positive selection pressures in the Chinese populations. The AvrPii-J was recognized as the wild type that emerged before rice domestication. Considering higher frequencies of avirulent isolates were detected in Hunan, Guizhou, and Liaoning, the cognate resistance gene Pii could be continuously used as a basic and critical resistance resource in such regions. The unique population structures of the AvrPii family found in China have significant implications for understanding how the AvrPii family has kept an artful balance and purity among its members (haplotypes) those keenly interact with Pii under gene-for-gene relationships. The lesson learned from case studies on the AvrPii family is that much attention should be paid to haplotype divergence of target gene

    Preliminary Study:Learning the Impact of Simulation Time on Reentry Location and Morphology Induced by Personalized Cardiac Modeling

    Get PDF
    Personalized cardiac modeling is widely used for studying the mechanisms of cardiac arrythmias. Due to the high demanding of computational resource of modeling, the arrhythmias induced in the models are usually simulated for just a few seconds. In clinic, it is common that arrhythmias last for more than several minutes and the morphologies of reentries are not always stable, so it is not clear that whether the simulation of arrythmias for just a few seconds is long enough to match the arrhythmias detected in patients. This study aimed to observe how long simulation of the induced arrhythmias in the personalized cardiac models is sufficient to match the arrhythmias detected in patients. A total of 5 contrast enhanced MRI datasets of patient hearts with myocardial infarction were used in this study. Then, a classification method based on Gaussian mixture model was used to detect the infarct tissue. For each reentry, 3 s and 10 s were simulated. The characteristics of each reentry simulated for different duration were studied. Reentries were induced in all 5 ventricular models and sustained reentries were induced at 39 stimulation sites in the model. By analyzing the simulation results, we found that 41% of the sustained reentries in the 3 s simulation group terminated in the longer simulation groups (10 s). The second finding in our simulation was that only 23.1% of the sustained reentries in the 3 s simulation did not change location and morphology in the extended 10 s simulation. The third finding was that 35.9% reentries were stable in the 3 s simulation and should be extended for the simulation time. The fourth finding was that the simulation results in 10 s simulation matched better with the clinical measurements than the 3 s simulation. It was shown that 10 s simulation was sufficient to make simulation results stable. The findings of this study not only improve the simulation accuracy, but also reduce the unnecessary simulation time to achieve the optimal use of computer resources to improve the simulation efficiency and shorten the simulation time to meet the time node requirements of clinical operation on patients

    From cropland to cropped field: A robust algorithm for national-scale mapping by fusing time series of Sentinel-1 and Sentinel-2

    Get PDF
    Detailed and updated maps of actively cropped fields on a national scale are vital for global food security. Unfortunately, this information is not provided in existing land cover datasets, especially lacking in smallholder farmer systems. Mapping national-scale cropped fields remains challenging due to the spectral confusion with abandoned vegetated land, and their high heterogeneity over large areas. This study proposed a large-area mapping framework for automatically identifying actively cropped fields by fusing Vegetation-Soil-Pigment indices and Synthetic-aperture radar (SAR) time-series images (VSPS). Three temporal indicators were proposed and highlighted cropped fields by consistently higher values due to cropping activities. The proposed VSPS algorithm was exploited for national-scale mapping in China without regional adjustments using Sentinel-2 and Sentinel-1 images. Agriculture in China illustrated great heterogeneity and has experienced tremendous changes such as non-grain orientation and cropland abandonment. Yet, little is known about the locations and extents of cropped fields cultivated with field crops on a national scale. Here, we produced the first national-scale 20 m updated map of cropped and fallow/abandoned land in China and found that 77 % of national cropland (151.23 million hectares) was actively cropped in 2020. We found that fallow/abandoned cropland in mountainous and hilly regions were far more than we expected, which was significantly underestimated by the commonly applied VImax-based approach based on the MODIS images. The VSPS method illustrates robust generalization capabilities, which obtained an overall accuracy of 94 % based on 4,934 widely spread reference sites. The proposed mapping framework is capable of detecting cropped fields with a full consideration of a high diversity of cropping systems and complexity of fallow/abandoned cropland. The processing codes on Google Earth Engine were provided and hoped to stimulate operational agricultural mapping on cropped fields with finer resolution from the national to the global scale

    Curcumin Micelles Remodel Tumor Microenvironment and Enhance Vaccine Activity in an Advanced Melanoma Model

    Get PDF
    Previously, we have reported a lipid-based Trp2 peptide vaccine for immunotherapy against melanoma. The suppressive immune microenvironment in the tumor is a major hurdle for an effective vaccine therapy. We hypothesized that curcumin (CUR) would remodel the tumor microenvironment to improve the vaccine activity. Curcumin–polyethylene glycol conjugate (CUR–PEG), an amphiphilic CUR-based micelle, was delivered intravenously (i.v.) to the tumor. Indeed, in the B16F10 tumor–bearing mice, the combination of CUR–PEG and vaccine treatment resulted in a synergistic antitumor effect (P < 0.001) compared to individual treatments. In the immune organs, the combination therapy significantly boosted in vivo cytotoxic T-lymphocyte response (41.0 ± 5.0% specific killing) and interferon-γ (IFN-γ) production (sevenfold increase). In the tumor microenvironment, the combination therapy led to significantly downregulated levels of immunosuppressive factors, such as decreased numbers of myeloid-derived suppressor cells and regulatory T cells (Treg) cells and declined levels of interleukin-6 and chemokine ligand 2—in correlation with increased levels of proinflammatory cytokines, including tumor necrosis factor-α and IFN-γ as well as an elevation in the CD8+ T-cell population. The results indicated a distinct M2 to M1 phenotype switch in the treated tumors. Combining CUR–PEG and vaccine also dramatically downregulated the signal transducer and activator of transcription 3 pathway (76% reduction). Thus, we conclude that CUR–PEG is an effective agent to improve immunotherapy for advanced melanoma

    The Precambrian Khondalite Belt in the Daqingshan area, North China Craton: evidence for multiple metamorphic events in the Palaeoproterozoic era

    Get PDF
    High-grade pelitic metasedimentary rocks (khondalites) are widely distributed in the northwestern part of the North China Craton and were named the ‘Khondalite Belt’. Prior to the application of zircon geochronology, a stratigraphic division of the supracrustal rocks into several groups was established using interpretative field geology. We report here SHRIMP U–Pb zircon ages and Hf-isotope data on metamorphosed sedimentary and magmatic rocks at Daqingshan, a typical area of the Khondalite Belt. The main conclusions are as follows: (1) The early Precambrian supracrustal rocks belong to three sequences: a 2.56–2.51 Ga supracrustal unit (the previous Sanggan ‘group’), a 2.51–2.45 Ga supracrustal unit (a portion of the previous upper Wulashan ‘group’) and a 2.0–1.95 Ga supracrustal unit (including the previous lower Wulashan ‘group’, a portion of original upper Wulashan ‘group’ and the original Meidaizhao ‘group’) the units thus do not represent a true stratigraphy; (2) Strong tectono-thermal events occurred during the late Neoarchaean to late Palaeoproterozoic, with four episodes recognized: 2.6–2.5, 2.45–2.37, 2.3–2.0 and 1.95–1.85 Ga, with the latest event being consistent with the assembly of the Palaeoproterozoic supercontinent Columbia; (3) During the late Neoarchaean to late Palaeoproterozoic (2.55–2.5, 2.37 and 2.06 Ga) juvenile, mantle-derived material was added to the crust
    • …
    corecore