90 research outputs found

    Nrf2−/− regulated lung DNA demethylation and CYP2E1 DNA methylation under PM2.5 exposure

    Get PDF
    Cytochrome P450 (CYP450) can mediate fine particulate matter (PM2.5) exposure leading to lung injury. Nuclear factor E2-related factor 2 (Nrf2) can regulate CYP450 expression; however, the mechanism by which Nrf2−/− (KO) regulates CYP450 expression via methylation of its promoter after PM2.5 exposure remains unclear. Here, Nrf2−/− (KO) mice and wild-type (WT) were placed in a PM2.5 exposure chamber (PM) or a filtered air chamber (FA) for 12 weeks using the real-ambient exposure system. The CYP2E1 expression trends were opposite between the WT and KO mice following PM2.5 exposure. After exposure to PM2.5,CYP2E1 mRNA and protein levels were increased in WT mice but decreased in KO mice, and CYP1A1 expression was increased after exposure to PM2.5 in both WT and KO mice. CYP2S1 expression decreased after exposure to PM2.5 in both the WT and KO groups. We studied the effect of PM2.5 exposure on CYP450 promoter methylation and global methylation levels in WT and KO mice. In WT and KO mice in the PM2.5 exposure chamber, among the methylation sites examined in the CYP2E1 promoter, the CpG2 methylation level showed an opposite trend with CYP2E1 mRNA expression. The same relationship was evident between CpG3 unit methylation in the CYP1A1 promoter and CYP1A1 mRNA expression, and between CpG1 unit methylation in the CYP2S1 promoter and CYP2S1 mRNA expression. This data suggests that methylation of these CpG units regulates the expression of the corresponding gene. After exposure to PM2.5, the expression of the DNA methylation markers ten-eleven translocation 3 (TET3) and 5-hydroxymethylcytosine (5hmC) was decreased in the WT group but significantly increased in the KO group. In summary, the changes in CYP2E1, CYP1A1, and CYP2S1 expression in the PM2.5 exposure chamber of WT and Nrf2−/− mice might be related to the specific methylation patterns in their promoter CpG units. After exposure to PM2.5, Nrf2 might regulate CYP2E1 expression by affecting CpG2 unit methylation and induce DNA demethylation via TET3 expression. Our study revealed the underlying mechanism for Nrf2 to regulate epigenetics after lung exposure to PM2.5

    Rational synthesis of an atomically precise carboncone under mild conditions

    Get PDF
    在已知的碳的存在形态中,还有一种锥型的碳结构,早在50年前人们在热解碳时发现了这类结构,此前也常被人们称为碳纳米锥,虽然这类碳纳米锥有望作为扫描隧道显微镜的探针、场发射头等替代材料,但始终未能找到合适方法精准地合成它们。因此,这类锥型碳材料尚未得到人们足够重视和开发。功能团簇材料创新研究群体的谢素原、张前炎课题组与美国波士顿学院的Lawrence Scott教授合作,首次通过有机合成途径,在温和的条件下合成得到了首例结构明确的碳锥单元(碳锥子)C70H20及其可溶衍生物。他们通过实验、理论计算、结构分析,最终在他们合成的碳锥子结构中,仅有1个五元环在锥顶,而在锥顶和锥缘之间(围绕着中心五元环)有2圈由六元环组成的完整的稠圈层,谢素原等将这一碳锥子命名为carboncone[1,2]。通过这一典型的碳锥子(carboncone[1,2]),有望借助气相沉积等技术不断增加稠圈层数(m)来制备具有确定锥角的系列单壁纳米碳锥(carboncone[1,m>2])。随着研究的深入,不久的将来人类有望合成出其它四种不同锥角的碳锥子(carboncone[n=2-5,m]),完整地研究探索和开发利用这类锥型结构的碳材料。 化学化工学院2015级硕士生朱正钟(主要负责合成)和2017级博士生陈佐长(主要负责理论计算)为该论文的共同第一作者。Carboncones, a special family of all-carbon allotropes, are predicted to have unique properties that distinguish them from fullerenes, carbon nanotubes, and graphenes. Owing to the absence of methods to synthesize atomically well-defined carboncones, however, experimental insight into the nature of pure carboncones has been inaccessible. Herein, we describe a facile synthesis of an atomically well-defined carboncone[1,2] (C70H20) and its soluble penta-mesityl derivative. Identified by x-ray crystallography, the carbon skeleton is a carboncone with the largest possible apex angle. Much of the structural strain is overcome in the final step of converting the bowl-shaped precursor into the rigid carboncone under mild reaction conditions. This work provides a research opportunity for investigations of atomically precise single-layered carboncones having even higher cone walls and/or smaller apex angles.This research was supported by the National Natural Science Foundation of China (21771152, 21721001, 21390390, 21827801, 51572231, 21571151, and 21701134), the 973 Program of China (2015CB932301), the Major Science and Technology Project between University-Industry Cooperation in Fujian Province (2016H6023), and the Fundamental Research Funds for the Central Universities (20720170028 and 20720160084). This research was also supported financially by the U.S. National Science Foundation (CHE-0809494 and CHE-1149096). 研究工作得到国家自然科学基金(21771152等)、科技部重大科学研究计划项目(2015CB932301)和福建省高校产学合作项目、中央高校基本科研业务费、美国国家科学基金等的资助

    Pseudomonas aeruginosa Eliminates Natural Killer Cells via Phagocytosis-Induced Apoptosis

    Get PDF
    Pseudomonas aeruginosa (PA) is an opportunistic pathogen that causes the relapse of illness in immunocompromised patients, leading to prolonged hospitalization, increased medical expense, and death. In this report, we show that PA invades natural killer (NK) cells and induces phagocytosis-induced cell death (PICD) of lymphocytes. In vivo tumor metastasis was augmented by PA infection, with a significant reduction in NK cell number. Adoptive transfer of NK cells mitigated PA-induced metastasis. Internalization of PA into NK cells was observed by transmission electron microscopy. In addition, PA invaded NK cells via phosphoinositide 3-kinase (PI3K) activation, and the phagocytic event led to caspase 9-dependent apoptosis of NK cells. PA-mediated NK cell apoptosis was dependent on activation of mitogen-activated protein (MAP) kinase and the generation of reactive oxygen species (ROS). These data suggest that the phagocytosis of PA by NK cells is a critical event that affects the relapse of diseases in immunocompromised patients, such as those with cancer, and provides important insights into the interactions between PA and NK cells

    Changes of 5-hydroxymethyl-2-furfural in fresh and processed ginsengs

    No full text
    The study estimated changes of 5-hydroxymethyl-2-furfuraldehyde (5-HMF) in different ginseng products with different temperatures and time pretreatment. Heat treatment was performed at various temperatures for 1.50, 2.00, 2.50, and 3.00 hr, respectively. Ultrasonic extraction and reflux extraction were used to evaluate the extraction rate and different solvents (such as 80% methanol, dichloromethane, ethyl acetate, and an extraction with both dichloromethane and ethyl acetate solvents) using two extraction methods (liquid–liquid extraction and solid-phase extraction) to remove matrix interference. An ultraperformance liquid chromatography–mass spectrometer (UPLC-MS) method was used for quantitative and changing analysis of 5-HMF in different ginseng samples. The results indicated that the content of 5-HMF increased dramatically with heating temperature and time, and the 5-HMF in the ginseng samples ranged from 0.01 to 112.32 g/kg protein. The highest value was observed in the honey-added ginseng samples with the highest amount of addition and highest temperature treatment, and the lowest value was found in the fresh ginseng samples. These results implied that 5-HMF may be as an indicator to estimate the honey addition level and heat treatment degree during the processing of ginseng products, and the content of 5-HMF is a promising parameter to evaluate the quality of products (ginseng). The production and regulation of potentially harmful Maillard reaction products (PHMRPs)-5-HMF in ginseng manufacture will provide an important reference for safe ginseng processing

    Potentially Harmful Maillard Reaction Products in Food and Herb Medicines

    No full text
    The Maillard reaction is of great significance in food, herb medicines, and life processes. It is usually occurring during the process of food and herb medicines processing and storage. The formed Maillard reaction productions (MRPs) in food and herb medicines not only generate a large number of efficacy components but also generate a small amount of harmful substance that cannot be ignored. Some of the MRPs, especially the advanced glycation end products (AGEs) are concerning humans, based on the possibility to induce cancer and mutations in laboratory animals. Numerous studies have been reported on the formation, analysis, and control of the potentially harmful MRPs (PHMRPs). Therefore, the investigation into the formation, analysis, and control of PHMRPs in food and herb medicines is very important for improving the quality and safety of food and herb medicines. This article provides a brief review of the formation, analysis (major content), and control of PHMRPs in food and herb medicines, which will provide a base and reference for safe processing and storage of food and herb medicines. Practical Applications. The formed Maillard reaction productions in food and herb medicines not only generate a large number of functional components but also generate a small amount of harmful substance that cannot be ignored. This contribution provides a brief review on the formation (including the correlative studies between MRs and the PHMRPs, mechanisms, and the main pathways); analysis (major content, pretreatment for analysis, qualitative and quantitative analysis, and structural identification analysis); and control (strategies and mechanisms) of PHMRPs in food and herb medicines, which will provide a solid theoretical foundation and a valuable reference for safe processing and storage for food and herb medicines

    Recent advances in defect-engineered transition metal dichalcogenides for enhanced electrocatalytic hydrogen evolution:Perfecting Imperfections

    No full text
    [Image: see text] Switching to renewable, carbon-neutral sources of energy is urgent and critical for climate change mitigation. Despite how hydrogen production by electrolyzing water can enable renewable energy storage, current technologies unfortunately require rare and expensive platinum group metal electrocatalysts, which limit their economic viability. Transition metal dichalcogenides (TMDs) are low-cost, earth-abundant materials that possess the potential to replace platinum as the hydrogen evolution catalyst for water electrolysis, but so far, pristine TMDs are plagued by poor catalytic performances. Defect engineering is an attractive approach to enhance the catalytic efficiency of TMDs and is not subjected to the limitations of other approaches like phase engineering and surface structure engineering. In this minireview, we discuss the recent progress made in defect-engineered TMDs as efficient, robust, and low-cost catalysts for water splitting. The roles of chalcogen atomic defects in engineering TMDs for improvements to the hydrogen evolution reaction (HER) are summarized. Finally, we highlight our perspectives on the challenges and opportunities of defect engineering in TMDs for electrocatalytic water splitting. We hope to provide inspirations for designing the state-of-the-art catalysts for future breakthroughs in the electrocatalytic HER

    Design of New Bridge-Ring Energetic Compounds Obtained by Diels–Alder Reactions of Tetranitroethylene Dienophile

    No full text
    The density functional theory method was employed to calculate three-dimensional structures for a series of novel explosophores. The design of new molecules (<b>DA1</b>–<b>DA12</b>) was based on the bridge-ring structures that could be formed via Diels–Alder (DA) reaction of selected nitrogen-rich dienes and tetranitroethylene dienophile. The feasibility of the proposed DA reactions was predicted on the basis of the molecular orbital theory. The strong interactions between the HOMO of dienes, with electron-donating groups (<b>Diene2</b>, <b>Diene6</b>, and <b>Diene8</b>), and the LUMO of tetranitroethylene dienophile suggested thermodynamically favorable formation of the desired DA reaction products. In addition to molecular structures of the explored DA compounds, their physicochemical and energetic properties were also calculated in detail. Due to compact bridge-ring structures, new energetic molecules have highly positive heats of formation (up to 1124.90 kJ·mol<sup>–1</sup>) and high densities (up to 2.04 g·cm<sup>–3</sup>). Also, as a result of all-right ratios of nitrogen and oxygen, most of the new compounds possess high detonation velocities (8.28–10.02 km·s<sup>–1</sup>) and high detonation pressures (30.87–47.83 GPa). Energetic compounds <b>DA1</b>, <b>DA4</b>, and <b>DA12</b> exhibit a superior detonation performance over widely used HMX explosive, and <b>DA5</b>, <b>DA7</b>, and <b>DA10</b> could be comparable to the state-of-the-art CL-20 and ONC explosives. Our proposed designs and synthetic methodology should provide a platform for the development of novel energetic materials with superior performance
    corecore