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Cytochrome P450 (CYP450) can mediate fine particulate matter (PM2.5) exposure
leading to lung injury. Nuclear factor E2-related factor 2 (Nrf2) can regulate
CYP450 expression; however, the mechanism by which Nrf2−/− (KO) regulates
CYP450 expression via methylation of its promoter after PM2.5 exposure remains
unclear. Here, Nrf2−/− (KO) mice and wild-type (WT) were placed in a PM2.5

exposure chamber (PM) or a filtered air chamber (FA) for 12 weeks using the
real-ambient exposure system. The CYP2E1 expression trends were opposite
between the WT and KO mice following PM2.5 exposure. After exposure to
PM2.5, CYP2E1 mRNA and protein levels were increased in WT mice but
decreased in KO mice, and CYP1A1 expression was increased after exposure to
PM2.5 in both WT and KO mice. CYP2S1 expression decreased after exposure to
PM2.5 in both the WT and KO groups. We studied the effect of PM2.5 exposure on
CYP450 promoter methylation and global methylation levels in WT and KO mice.
In WT and KO mice in the PM2.5 exposure chamber, among the methylation sites
examined in the CYP2E1 promoter, the CpG2 methylation level showed an
opposite trend with CYP2E1 mRNA expression. The same relationship was
evident between CpG3 unit methylation in the CYP1A1 promoter and
CYP1A1 mRNA expression, and between CpG1 unit methylation in the CYP2S1
promoter and CYP2S1 mRNA expression. This data suggests that methylation of
these CpG units regulates the expression of the corresponding gene. After
exposure to PM2.5, the expression of the DNA methylation markers ten-eleven
translocation 3 (TET3) and 5-hydroxymethylcytosine (5hmC) was decreased in the
WT group but significantly increased in the KO group. In summary, the changes in
CYP2E1, CYP1A1, and CYP2S1 expression in the PM2.5 exposure chamber of WT
and Nrf2−/− mice might be related to the specific methylation patterns in their
promoter CpG units. After exposure to PM2.5, Nrf2 might regulate
CYP2E1 expression by affecting CpG2 unit methylation and induce DNA
demethylation via TET3 expression. Our study revealed the underlying
mechanism for Nrf2 to regulate epigenetics after lung exposure to PM2.5.
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1 Introduction

Atmospheric pollution levels have improved throughout China;
However, air pollution in Shijiazhuang, Hebei, located in northern
China, is still serious in the seasonal heating season during winter.
PM2.5 (aerodynamic diameter <2.5 µm) is the main component of
air pollution that cause lung damage and affect lung function in
organisms during short-term exposure (Li D. et al., 2019; Jiang et al.,
2021; Strassmann et al., 2021). Previous studies have found that the
expression of the CYP450 enzyme in lung tissue is related to the
change in lung function after exposure to PM2.5 (Kim et al., 2018).

Exogenous chemicals in PM2.5 can be metabolized by
cytochrome P450 (CYP450) enzymes, resulting in lung cell
damage (Billet et al., 2007). CYP2E1, CYP1A1, and CYP2S1 are
the key metabolic enzymes in phase I and are mainly located in the
membrane of the endoplasmic reticulum (ER) and mitochondrion
(Mittal et al., 2015; Popescu et al., 2021). PM2.5 exposure increases
the expression of CYP2E1, which leads to lung injury via
endoplasmic reticulum stress (Ding et al., 2021). Exogenous
chemicals in PM2.5 can be metabolized by CYP1A1 to induce
oxidative stress and inflammation, which lead to human lung cell
injury (Abbas et al., 2019). CYP2S1 metabolizes various exogenous
chemicals, such as PAHs, in atmospheric fine particulate matter (Al
Zallouha et al., 2020), dioxins and naphthalene are toxic and
potentially carcinogenic PAHs (Karlgren et al., 2005) that may be
key players in lung injury.

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a
transcriptional factor of the bZIP family and is also a core
transcription factor in anti-oxidative stress, regulating multiple
antioxidant genes (Tebay et al., 2015). Our previous study has
shown that PM2.5 exposure reduced lung function in wild-type
(WT) mice; However, compared with a filtered air group, PM2.5

exposure has no obvious effect on the lung function and pathology
of Nrf2−/− (KO) mice. Changes in CYP450 expression in KO mice
following PM2.5 exposure, thereby affecting endoplasmic reticulum
stress, which is closely related to lung injury (Ding et al., 2021).
Numerous studies have illustrated that Nrf2 can regulate the
expression of CYP450 (Wu et al., 2012; Ashino et al., 2020).

Gene expression is regulated by DNA methylation, and the
hypomethylation of CpG islands in gene promoters is associated
with gene activation (Edgar et al., 2014); However, promoter CpG
island hypermethylation represses gene expression (Rider and
Carlsten, 2019). The homeostasis between DNA methylation
and demethylation is a crucial mechanism that protects the
stability of organisms (Robertson, 2005). DNA
methyltransferases (DNMTs) are responsible for DNA
methylation, which transfers the methyl group of S-adenosyl
methionine (SAM) to cytosine in DNA (Lyko, 2018). Gene
silencing is caused by gene promoter hypermethylation (Moore
et al., 2013; Fukui et al., 2019). DNA demethylation involves a ten-
eleven translocation methylcytosine dioxygenase (TETs) to oxidize
5-methylcytosine (5 mC) into 5-hydroxymethylcytosine (5hmC)
(Kafer et al., 2016). DNA methylation affects CYP450 expression
(Liu et al., 2022). In a study of lung injury caused by smoking, DNA
methylation was found to be the main regulator of CYP450 enzyme
expression (Tekpli et al., 2012). In addition, the previous study
found that PM2.5 exposure causes lung injury and is associated
with DNA methylation changes (Shi et al., 2019). However, it is

unclear whether CYP450 enzyme gene expression is affected by
DNA methylation in Nrf2−/− mice exposed to PM2.5.

A real-ambient exposure system was used in the present study,
which realistically simulated the surrounding atmospheric
environment. An independent ventilation cage system equipped
with or without three layers of high-efficiency particulate air filters
that can filter particulate matter in filtered air chambers and not
filter in PM2.5 exposure chambers was constructed in Shijiazhuang,
Hebei Province (Jiang et al., 2020; Jiang et al., 2021). The system
accurately simulated real air pollution in the environment (Tang
et al., 2022).

In our study, Nrf2−/− mice exposed to PM2.5 exhibited decreased
CYP2E1 expression in the lung, potentially due to the regulatory
effect of Nrf2 on CYP2E1 expression via CpG unit methylation.
Nrf2 may regulate DNA demethylation by affecting
TET3 expression after PM2.5 exposure. Our study provides a new
theoretical basis by which Nrf2 regulates epigenetics after PM2.5

exposure.

2 Materials and methods

2.1 Animal and real-ambient exposure
system

The Nrf2−/− mice were modeled by Professor Masayuki
Yamamoto at Tohoku University and provided by Jingbo Pi
Laboratory, China Medical University (Jiang et al., 2021). And
Nrf2+/− mice were bred in male and female to obtain Nrf2−/−

mice and WT was Nrf2+/+ mice, and PCR genotyping was used
to distinguish them (Ding et al., 2021; Jiang et al., 2021). The real-
ambient exposure system in this study is located in Shijiazhuang,
and the exposure device is as described in the previous study (Li D.
et al., 2019; Jiang et al., 2021). In short, the IVC exposure system
consists of a control and exposure chamber, which is connected to a
three-layer HEPA filter to produce filtered air (FA), and an exposure
chamber which is connected to unfiltered air (PM). The factors
(temperature, airflow, humidity, pressure, ventilation frequency, air
flow rate, and noise) in both chambers are consistent (Ding et al.,
2021). Eight-week-old Nrf2 Knockout mice and WT mice were
placed in FA and PM chambers (10 mice per group), and the mice
were given food and water freely in a circulating chamber with 12 h
light and 12 dark. Mice were exposed for 16 h daily and 7 days/week
for 12 weeks (Jiang et al., 2021). We analyzed particle size profiles in
both chambers with an Aerodynamic Particle Sizer Spectrometer
3321 and measured PM2.5 concentrations with the Aerosol Detector
DUSTTRAKTM II (TSI Incorporated, Shoreview, MN,
United States). Our previous study showed that PM2.5 exposure
concentration exceeded 35 μg/m3 on 76 of 12 weeks of exposure
(84 days) and exceeded 150 μg/m3 on 28 days (Li D. et al., 2019). The
average daily concentration of PM2.5 in the ambient air studied was
130.22 μg/m3, and the average daily concentration of PM2.5 in the
exposed room was 85.24 μg/m3 (Li D. et al., 2019). Based on our
previous methods, the cumulative pulmonary exposure to PM2.5 was
calculated to be 154.79 μg (Jiang et al., 2021). The ethical committees
of Hebei Medical University (IACUC-Hebmu-20170116) approved
the animal experiments and complied with all animal ethics
regulations.
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2.2 Quantitative real-time PCR

Extraction of Total mRNA from mice lung tissue using Trizol
reagent (Thermo Science, Waltham, United States). We used reverse
transcription kits for the synthesis of cDNA (Takara, Kyoto, Japan).
SYBR Green PCR Master Mix was used for real-time quantitative
PCR (qRT-PCR) (Thermo Fisher Science, Waltham, United States).
The expression of DNA damage response enzymes was measured by
qRT-PCR. The target gene was compared with ß-actin, and the
relative expression was calculated. The primers used are described in
Supplemental Material Table S1.

2.3 Western blot

Mice lung tissue was homogenized with a mixture containing
phenylmethylsulfonyl fluoride (PMSF), alkaline phosphatase
inhibitors, and protease inhibitors (Solarbio, Beijing). Protein
concentrations were determined with the BCA protein analysis
kit (Solarbio, Beijing, China) according to its product
instructions. Using a 10% (SDS-PAGE) gel, transfer the protein
to a polyvinylidene fluoride (PVDF) membrane (MILLIBOLE,
Billerica, MA). Block with skim milk powder for 2 hours at
normal temperature, and incubated overnight at 4°C with
primary antibodies including CYP2E1 (Affinity, Beijing, 1:1,000),
Nrf2 (Cell Signaling Technology, Boston, 1:1,000), GAPDH
(ABclonal, Wuhan 1:1000), CYP1A1 (ABclonal, Wuhan 1:1000),
CYP2S1 (absin, Shanghai 1:1000), DNMT1 (ABclonal, Wuhan 1:
1000), TET1 (ABclonal, Wuhan 1:1000), TET3 (ABclonal, Wuhan 1:
1000) and then goat anti-rabbit IgG secondary antibody (Epizyme,
Shanghai, China) was incubated at room temperature for 2 h.
Detection was performed using the ECL system (Millipore,
Billerica, MA, United States) and analysis was performed using
ImageJ (NIH, United States) software.

2.4 Immunohistochemistry

Mice’s lung tissue was fixed with formalin and embedded in
paraffin. Samples were cut into 5 μm sections and dewaxed in water,
and antigen repair was performed. Serum block at room
temperature for 30 min. The sections were incubated with
CYP1A1, CYP2E1, CYP2S1, TET3, TET1, DNMT1, 5hmC and
γ-H2AX antibodies at 4°C overnight. After washing with PBS
(PH7.4), the cells were incubated with HRP-labeled secondary
antibody for 50 min at room temperature, then DAB developer
was added to the drop, and hematoxylin was used as the compound
stain. Five regions were randomly selected from the slices and
quantified by ImageJ (NIH, United States) using the research
method described previously (Wong et al., 2019).

2.5 DNAmethylation analysis by MassARRAY

We selected 5000bp upstream and 1000bp downstream of the
transcription start site from the gene sequence of NCBI
(GRCm39 version), finally, we selected the regions with relatively
dense CpG sites for detection. Mice lung DNA was extracted with

the DNA extraction kit (BioTeKe Corporation) according to the
instructions, and bisulfite was modified with a NaHSO3 kit (ZYMO
Research). Sequenom EpiTYPER analysis was performed following
the protocol recommended by the manufacturer. EpiDesigner
(Agena) was used to design the target region primers, and the
PAGE primer purification method was used to synthesize the
PCR primer sequences of the corresponding fragments. For each
reverse primer, an additional T7 promoter tag for in vivo
transcription was added, while a 10 M tag on the forward primer
was used to regulate the unchain temperature difference Cycling
conditions: 4 min at 94°C followed by 45 cycles of 94°C for the 20°s,
56°C for 20°s, and 72°C for 1min followed by 72°C for 3°min. PCR
products processed according to the manufacturer’s instructions
were used for MassARRAY analysis, and the relative amount of
methylation can be calculated by comparing the signal intensities
between the quality signals of methylated and unmethylated
template DNA. Methylation ratios of individual units were
generated by EpiTYPER™ (Agena, Inc.) software, inapplicable
readings, and their corresponding sites were excluded from the
analysis. The primer sequences are shown in Supplementary
Table S2.

2.6 SAM and SAH detected by ELISA

SAM and SAH were measured with ELISA kits (Shanghai
FANKEL Industrial Co., Ltd.). Three times were repeated for all
standards and samples according to the product instructions, and
the absorbance (OD) was read at 450 nm to calculate the
concentration of SAM SAH in the lung.

2.7 Statistical analysis

Statistical analysis was performed using GraphPad Prism (8.30)
software. Data are presented as mean ± SEM. Differences between
control and exposed groups were assessed by two-way analysis of
variance (TWO WAY-ANOVA). Results were considered
statistically significant as follows: * p < 0.05; ** p < 0.01; *** p <
0.001; **** p < 0.0001.

3 Results

3.1 The antioxidant levels of WT and Nrf2−/−

mice decreased after PM2.5 exposure

In WT mice, Nrf2 downstream genes except for superoxide
dismutase-1 (SOD1), which was increased after PM2.5 exposure,
other antioxidant indexes such as superoxide dismutase-2 (SOD2),
heme oxygenase-1 (HO-1), glutathione peroxidase (GSH-Px) were
significantly decreased after PM2.5 exposure, while there was no
significant difference in antioxidant levels after PM2.5 exposure in
the Nrf2 knockout mice compared with the FA group
(Supplementary Material). These results suggested that PM2.5

exposure reduced the antioxidant level in wild-type mice, but
after Nrf2 knockout, there was no significant change in
antioxidant level in the FA group and PM2.5 group.

Frontiers in Genetics frontiersin.org03

Wu et al. 10.3389/fgene.2023.1144903

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1144903


FIGURE 1
Expression levels of CYP450 enzyme in WT group and Nrf2−/−group. (A) Changes in mRNA levels of CYP450 enzyme. (B) The expression of
CYP450 enzyme protein levels was analyzed by WB and quantified by ImageJ analysis. n = 3 per group. (C) Immunohistochemical detection of
CYP450 protein expression in four groups and quantitative analysis of the positive area. n = 2 per group. Scale bars are 50 μm, FA, filtered air; PM, fine
particulate matter. WT, wild-type mice; KO, Nrf2−/− mice. Error bars represent mean ± SEM, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 2
Expression of DNA methylation-related enzymes in four groups. (A) The DNA methyltransferase mRNA expression. n = 3 per group. (B) The DNA
demethyltransferase mRNA expression levels. n = 3 per group. (C) WB analysis of protein levels of DNMT1, TET1, and TET3 expression. n = 3 in each
group. (D) Immunohistochemical analysis of the positive area levels of DNMT1, TET1, and TET3. FA, filtered air; PM, fine particulate matter; WT, wild-type
mice; KO, Nrf2−/− mice. Scale bars are 50 μm, n = 3 per group. Error bars represent mean ± SEM, *p < 0.05,**p < 0.01,***p < 0.001,****p < 0.0001.
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3.2 Expression of four groups of
CYP450 enzymes

We explored the expression of key cytochrome P450 (CYP450)
enzyme genes during exposure for 12 weeks (Figure 1A). The results
showed that in wild-type mice, the mRNA expression levels of
CYP2E1 and CYP1A1 increased after exposure to PM2.5, while
CYP2S1 expression decreased. In KO mice, the CYP1A1
expression was increased, but the expression level of CYP2E1 and
CYP2S1 decreased after PM2.5 exposure. Additionally, in Nrf2−/−

mice exposed to PM2.5, the CYP2E1 protein level was significantly
reduced but elevated in WT mice (Figures 1B, C). In WT and KO
mice, CYP1A1 protein level increased after PM2.5 exposure, while
CYP2S1 expression decreased after PM2.5 exposure, the trend was
consistent with that of mRNA (Figures 1B, C). Overall, it suggested
that PM2.5 exposure could affect the expression of CYP450 enzyme
in WT and Nrf2−/− mice.

3.3 Expression levels of DNA methylation-
related enzymes in four groups

The level of DNA methylation is regulated by methylation-
related enzymes. Therefore, we detected the expression of DNA
methyltransferase (DNMT) and DNA demethyltransferase (TET).
Our results indicated that TET1 mRNA was increased in WT mice
after PM2.5 exposure, while TET2 and TET3 mRNA decreased
significantly after exposure to PM2.5 (Figures 2A, B). However,
only the TET3 mRNA level was significantly increased in
Nrf2 knockout mice after PM2.5 exposure, and TDG mRNA
expression of DNMTs, TET1, TET2, and TDG had no significant
difference. (Figures 2A, B; Supplementary Figure S3). The protein
and mRNA levels trend were similar, our data suggested that the
protein levels of DNMT1 and TET3 were significantly decreased,
while TET1 was increased in theWTmice following PM2.5 exposure.
But the DNMT1 and TET3 protein levels in KO-PM mice were
significantly higher than those in KO-FA mice, while TET1 showed
no significant change (Figures 2C, D).

3.4 MassARRAY detection of methylation
levels in CYP450 promoter

A single CpG site or multiple CpG sites constitute a methylation
detection unit, and the methylation units in the detection region are
detected. MassARRAY detection sequence CYP2E1 contains
498 base pairs, 7 CpG sites are divided into 7 CpG units,
CYP1A1 contains 475 base pairs, 4 CpG sites are divided into
4 CpG units, CYP2S1 contains 434 base pairs, including 15 CpG
sites are divided into 12 CpG units.

To investigate whether DNA methylation is the main factor
affecting CYP450 expression, we detected the methylation levels of
CYP2E1, CYP2S1, and CYP1A1 promoter sites. In CYP2E1 seven
methylated CpG units, only the methylation level of CpG2 decreased
in the WT group after PM2.5 exposure but increased in Nrf2−/−

group, and there was an opposite trend in CpG2 and
CYP2E1 mRNA and protein levels; However, no similar trend
was found in methylation levels of other CpG units and

CYP2E1 expression (Figures 3A–C). Among all CpG units in the
CYP1A1 promoter, we found that compared with the control group,
the methylation level of CpG3 in theWT and KO groups after PM2.5

exposure tended to decrease, which was contrary to the
CYP1A1 mRNA level; However, there was no opposite trend
between the remaining CpG units and CYP1A1 mRNA level
(Figures 3C, D; Figure 1A). In the detected units of CYP2S1, only
the methylation level of CpG1 increased after PM2.5 exposure inWT
and Nrf2 knockout mice, and the trend of CpG1 was opposite to its
mRNA levels. However, no similar trend was observed in the
remaining CpG units (Figures 3E, F; Figure 1A). In conclusion,
PM2.5 exposure in WT and Nrf2−/− mice could affect the CpG unit
methylation level of the CYP2E1, CYP1A1, and CYP2S1 enzymes,
which might affect related gene expression.

3.5 Expression of global methylation levels in
four groups

In DNA methylation analysis, LINE1 methylation accounts for
about 40%–50% of the whole genome (Choudhury et al., 2017), so
we used MassARRAY to detect the methylation levels of LINE1 was
taken as the global methylation level, and the detection sequence
consisted of 185 base pairs and 9 CpG sites were divided into eight
CpG units. We found that CpG4 showed an increasing trend after
PM2.5 exposure in WT and Nrf2 knockout mice, and the rest had no
significant changes (Figure 4B), nevertheless, LINE1 mean
methylation levels did not change significantly (Supplementary
Figure S4). After PM2.5 exposure, the expression level of the WT
group decreased at 5-hydroxymethylcytosine (5hmC), while the
Nrf2 knockout mice increased (Figure 4B).

SAM (S-adenosylmethionine) is a raw material for DNA
methylation and can affect DNA methylation, while SAH
(S-adenosylhomocysteine) is a methyltransferase inhibitor, and
the SAM/SAH ratio represents the potential for global
methylation (Speckmann et al., 2017). In WT mice, the SAM
expression level was elevated after PM2.5 exposure, while SAH
was decreased, and the SAM/SAH was increased, so the potential
for methylation was increased (Figure 4A). In Nrf2 knockout mice
exposed to PM2.5, there was no obvious change in SAM, while SAH
increased significantly, and SAM/SAH decreased significantly, so its
methylation potential was significantly reduced (Figure 4A).

3.6 PM2.5 exposure induced ATR-dependent
DNA damage repair in KO mice

The study has found that Nrf2 could affect DNA damage repair
by affecting the ataxia telangiectasia and Rad3-related protein (ATR)
signaling pathway (Sun et al., 2020). To detect the effect of PM2.5

exposure on DNA damage repair, the mRNA levels of markers
related to the ATR signaling pathway were measured. The γ-H2AX,
an indicator of DNA damage, was increased in WTmice after PM2.5

exposure, but not in KOmice (Figure 5B). The mRNA levels of ATR
pathway-related indicators ATR, ATM, RAD51, and
BRCA1 decreased after the WT group was exposed to PM2.5, but
increased after the KO-PM group (Figure 5A), suggesting that PM2.5

exposure induced ATR-dependent DNA damage repair in KOmice.
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4 Discussion

Shijiazhuang City in Hebei Province experiences some of the
most severe PM2.5 pollution in China. The city’s main sources of
PM2.5 are industrial emissions, vehicle exhaust, and coal burning
(Zhang et al., 2021). Because of its severe pollution, we selected this
city for our study. We established a real-ambient exposure system in

this area, which overcame the shortcomings of traditional exposure
methods and better ensured that the temperature, air pressure,
humidity, and all other conditions of the filtered air chamber
(FA) and the PM2.5 exposure chamber (PM) were consistent,
rendering the experimental results more comparable (Tang et al.,
2022). We did not detect PM2.5 in the FA chamber, and the PM
chamber could reflect the outside atmosphere. Studies using this

FIGURE 3
MassARRAY detects methylation levels in the CYP450 promoter; EpiTYPER was used for methylation sequence analysis of promoter selected sites.
(A)Methylation units and sequences of the CYP2E1 promoter region. (B)Heat maps of the methylation levels of 7 CpG units of CYP2E1 in four groups. n =
3 per group. (C)Methylation units and sequences of the CYP1A1 promoter region. (D) Heat maps of the methylation levels of the 4 CpG units of CYP1A1.
n = 3 per group. (E) Methylation units and sequences of the CYP2S1 promoter region. (F) Heat maps of the methylation levels of 12 CpG units of
CYP2S1. n = 3 per group. FA, filtered air; PM, fine particulate matter. WT, wild-type mice; KO, Nrf2−/− mice.
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system have been published in various journals (Li D. et al., 2019;
Jiang et al., 2021).

Nrf2 is an important transcription factor for antioxidants. When
stimulated by external environmental substances, the nuclear
transcription of Nrf2 is increased, and the transcription of
corresponding antioxidant genes is initiated (Liu et al., 2017).
PM2.5 exposure increased the expression of Nrf2 and its
antioxidant genes in mice lungs (Pardo et al., 2019), and
Nrf2 protects the body from oxidative stress damage. A previous
study found that PM2.5-induced oxidative stress leads to body

damage, which is increased in Nrf2-deficient mice (Ge et al.,
2020). However, other studies have shown that Nrf2 knockout
did not exacerbate organ damage caused by PM2.5 exposure (Cui
et al., 2020; Jiang et al., 2021).

Polycyclic aromatic hydrocarbons (PAHs) in PM2.5 can be
metabolized and activated by CYP450, producing hazardous
substances and causing lung injury (Martin et al., 2019). Our
previous study showed that CYP2E1 is involved in lung injury
caused by PM2.5. The injury caused by the increased expression
of CYP2E1 may be related to the activation and metabolism of

FIGURE 4
The global methylation-related indicators were at levels of the four groups. (A) Expression levels of SAM and SAH in lung tissue. n = 3 per group (B)
Methylation units and sequences of the LINE1 region. MassARRAY assay for LINE1 methylation levels. n = 3 per group. The expression level of 5hmC in
lung tissue was detected by immunohistochemistry and the positive area was calculated. n = 2 in per group. FA, filtered air; PM, fine particulate matter;
WT, wild-type mice; KO, Nrf2−/− mice. Scale bars are 50 μm. Data were mean ± SEM, *p < 0.05, **p < 0.01.
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substances in PM2.5, thereby inducing endoplasmic reticulum stress
(Ding et al., 2021). We showed that CYP2E1 expression was
increased in WT-PM mice but decreased in KO-PM mice
compared to controls, and thus CYP2E1 could play a key factor
in the regulation of lung injury. However, the underlying
mechanisms remain unclear.

The regulation of gene expression requires DNA methylation
(Wagner et al., 2014). The hypermethylation or hypomethylation of
gene promoters can silence or activate transcription, respectively
(Baylin and Ohm, 2006). Much research has indicated that promoter
DNA methylation regulates the expression of CYP450 enzymes
(Suter et al., 2010; Jiménez-Garza et al., 2017; Takeda et al.,
2021). It has been reported that DNA methylation may regulate
CYP2E1 expression and enzyme activity in workers exposed to
toluene (Jimenez-Garza et al., 2020). To clarify whether
Nrf2 changed the gene expression of CYP450 enzyme
(particularly CYP2E1) through altering DNA methylation
following PM2.5 exposure, we investigated the methylation of the

CYP2E1, CYP1A1, and CYP2S1 promoters, as well as DNA
methylation-related indicators.

We found that the CpG2 methylation level in CYP2E1 was
decreased in the WT-PM mice but increased in the KO-PM mice
compared to the control. Interestingly, CYP2E1 mRNA and protein
expression was increased in WT mice after PM2.5 exposure, but
decreased in KO mice after PM2.5 exposure compared with control
mice. This suggests that after PM2.5 exposure, CYP2E1 expression is
increased in WT mice potentially via hypomethylation of the
CpG2 unit, but is inhibited in KO mice potentially via CpG
hypermethylation. Our results imply that Nrf2 could regulate
CYP2E1 expression by affecting CpG2 methylation. We also
found that the CpG3 methylation level in the CYP1A1 promoter
decreased after exposure to PM2.5 in wild-type and Nrf2 knockout
mice. However, PM2.5 exposure caused increased CYP1A1 mRNA
expression in both wild-type and Nrf2 knockout mice. Therefore, we
speculated that the CYP1A1 mRNA level might be increased by
CpG3 hypomethylation in WT and KO mice following PM2.5

FIGURE 5
Effects of PM2.5 exposure on ATR pathway-related factors. (A)mRNA expression of ATR pathway-related indicators. n = 3 in each group. Data were
mean ± SEM, *p < 0.05, **p < 0.01, ****p < 0.0001. (B) γ-H2AX expression level in mice lung tissue was detected by immunohistochemistry and the
positive area was quantified by ImageJ. n = 2 per group. FA, filtered air; PM, fine particulate matter; WT, wild-type mice; KO, Nrf2–/– mice.
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exposure. The methylation level of CpG1 in the CYP2S1 promoter
region was increased in bothWT and KOmice after PM2.5 exposure,
which might be one of the reasons for the decreased mRNA
expression of CYP2S1 in both WT and KO mice following PM2.5

exposure.
The major DNA modification was the methylation of cytosine

(5 mC) (Li Z. et al., 2019). The DNA methylation process is
mediated by DNMTs (Wu et al., 2007). According to the report
that 5 mC is demethylated to 5hmC, 5 fC, and 5caC by TET
oxidation (Ito et al., 2010). SAM/SAH ratio, DNMTs, and TETs
are crucial to maintaining the homeostasis of DNA methylation in
the body. Environmental pollution can affect single-carbon
metabolic pathways through oxidative stress, leading to a
decrease in methyl donor SAM or SAM/SAH levels, which may
result in decreased DNA methylation (Wang et al., 2009). Air
pollution may also affect the expression of DNMT and TET
enzymes, which may result in decreased global methylation levels
(Rider and Carlsten, 2019).

LINE1 methylation could represent global DNA methylation
(Delgado-Cruzata et al., 2015). The previous study found that PM
exposure can decrease LINE1 methylation in rat lungs (Ding et al.,
2016; Guo et al., 2022). However, another study of boiler welders
found no significant association between LINE1 methylation and
occupational PM2.5 exposure (Kile et al., 2013). In this research, we
found that the mean methylation level of LINE1 did not change
significantly in theWT or KO group after PM2.5 exposure, indicating
that exposure to PM2.5 might not affect the global methylation level.
It was reported that 5hmC is a crucial product in enzyme-catalyzed
active DNA demethylation (Hahn et al., 2013). We found that the
5hmC level was decreased in the lungs of WT mice following PM2.5

exposure, which was consistent with previous studies (de Oliveira
et al., 2018), whereas in KOmice lungs increased. The SAM/SAH, an
indicator of methylation potential, increased inWTmice after PM2.5

exposure, indicating an increase in methylation potential, but
decreased in KO mice after PM2.5 exposure, indicating a decrease
in methylation potential. We found that the SAM/SAH ratio was not
associated with the methylation of LINE1. We speculated that the
SAM/SAH ratio is too low to significantly affect the change in
LINE1 methylation (Lee et al., 2017).

DNA methylation-related enzymes such as DNMTs and TETs can
regulate DNA methylation and demethylation (Li and Zhang, 2014;
Zhang et al., 2022). Many reports have shown that exposure to PM2.5

can generate oxidative stress, which inhibits the function of DNMTs,
leading to global hypomethylation and even cancer (Franco et al., 2008).
A population epidemiological study showed PM exposure resulted in a
decrease in global DNAmethylation and DNMT3B levels (Wang et al.,
2020). According to another study, diesel particulate matter decreased
TET1 expression in human bronchial epithelial cells and thereby a
significant reduction in 5-hmC expression (Somineni et al., 2016). In
the present research, we observed decreased expression of TET3 and
DNMT1 when PM2.5 exposure in WT mice, which could be because
PM2.5 exposure also reduces the enzyme activities of DNMT1 and
TET3. However, there was no significant change in the DNA
methylation level, which may be due to a decrease in the TET3 level
leading to a decrease in the 5hmC level, causing an increase in 5 mC
over time, thus maintaining DNA methylation0 homeostasis in the
body (Rider and Carlsten, 2019). We speculated that the increase in the
5hmC level in KOmice exposed to PM2.5 was related to TETs; however,

we found a significant increase only in TET3, which may be one reason
for the increase in 5hmC. Our results suggest that Nrf2 may affect the
global 5hmC level by regulating TET3 expression under exposure to
PM2.5. However, compared with KO-FA mice, the global methylation
level in KO-PM mice did not change significantly, whereas the
expression of DNMT1 was significantly increased. This may be
because the increased demethylation level in the body increases the
expression of DNMT1 in the body via a feedback mechanism to
maintain 5 mC homeostasis.

Overall, our results suggest that TET3 expression may affect the
5hmC level in WT and KO mice upon PM2.5 exposure. A previous
study showed that ATR indirectly mediates the hydroxymethylation
of 5mC to 5hmC by affecting the expression of TET3 in
camptothecin-induced DNA damage in fibroblasts (Jiang et al.,
2017), and recent studies have shown that Nrf2 regulates the
ATR/Chk1 pathway is critical for radiation-induced DNA
damage (Sun et al., 2020). We initially investigated whether
Nrf2 affected TET3/5hmC levels via ATR following PM2.5

exposure. Interestingly, our results suggested that following
exposure to PM2.5 in WT and KO mice, the expression of ATR
and its pathway-related indicators was consistent with that of
TET3 and 5hmC, implying that ATR expression may affect the
expression of TET3 and 5hmC. In addition, after PM2.5 exposure,
the changing trends in ATR, TET3, 5hmC, and other indicators in
the WT group contrasted with those in the KO group, and we
therefore speculated that Nrf2 mediates TET3/5hmC by affecting
ATR after PM2.5 exposure.

In conclusion, in this research, a real-ambient exposure system
was used to evaluate the influence of PM2.5 exposure on CYP2E1,
CYP1A1, and CYP2S1 expression possibly via CpG methylation in
their promoters in WT and KO mice. Our previous study showed
that Nrf2 could cause lung injury by inducing CYP2E1 after PM2.5

exposure (Ding et al., 2021). Here, we found that Nrf2 affected the
CpG2 methylation level, which may be related to CYP2E1
expression. Nrf2 might induce DNA demethylation via
TET3 expression after PM2.5 exposure. These findings contribute
to the understanding of epigenetic mechanisms after PM2.5 exposure
and identify new mechanisms.
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