4,152 research outputs found

    M-OFDFT: Overcoming the Barrier of Orbital-Free Density Functional Theory for Molecular Systems Using Deep Learning

    Full text link
    Orbital-free density functional theory (OFDFT) is a quantum chemistry formulation that has a lower cost scaling than the prevailing Kohn-Sham DFT, which is increasingly desired for contemporary molecular research. However, its accuracy is limited by the kinetic energy density functional, which is notoriously hard to approximate for non-periodic molecular systems. In this work, we propose M-OFDFT, an OFDFT approach capable of solving molecular systems using a deep-learning functional model. We build the essential nonlocality into the model, which is made affordable by the concise density representation as expansion coefficients under an atomic basis. With techniques to address unconventional learning challenges therein, M-OFDFT achieves a comparable accuracy with Kohn-Sham DFT on a wide range of molecules untouched by OFDFT before. More attractively, M-OFDFT extrapolates well to molecules much larger than those in training, which unleashes the appealing scaling for studying large molecules including proteins, representing an advancement of the accuracy-efficiency trade-off frontier in quantum chemistry

    Fractal pore and its impact on gas adsorption capacity of outburst coal: Geological significance to coalbed gas occurrence and outburst

    Get PDF
    Pore structure and methane adsorption of coal reservoir are closely correlated to the coalbed gas occurrence and outburst. Full-scale pore structure and its fractal heterogeneity of coal samples were quantitatively characterized using low-pressure N2 gas adsorption (LP-N2GA) and high-pressure mercury intrusion porosimetry (HP-MIP). Fractal pore structure and adsorption capacities between outburst and nonoutburst coals were compared, and their geological significance to gas occurrence and outburst was discussed. The results show that pore volume (PV) is mainly contributed by macropores ( \u3e 1000 nm) and mesopores (100-1000 nm), while specific surface area (SSA) is dominated by micropores ( \u3c 10 nm) and transition pores (10 - 100 nm). On average, the PV and SSA of outburst coal samples are 4.56 times and 5.77 times those of nonoutburst coal samples, respectively, which provide sufficient place for gas adsorption and storage. The pore shape is dominated by semiclosed pores in the nonoutburst coal, whereas open pores and inkbottle pores are prevailing in the outburst coal. The pore size is widely distributed in the outburst coal, in which not only micropores are dominant, but also, transition pores and mesopores are developed to a certain extent. Based on the data from HP-MIP and LP-N2GA, pore spatial structure and surface are of fractal characteristics with fractal dimensions Dm1 (2.81 - 2.97) and Dn (2.50 - 2.73) calculated by Menger model and Frenkel-Halsey-Hill (FHH) model, respectively. The pore structure in the outburst coal is more heterogeneous as its Dn and Dm1 are generally larger than those of the nonoutburst coal. The maximum methane adsorption capacities (VL: 15.34 - 20.86 cm 3 / g) of the outburst coal are larger than those of the nonoutburst coal (VL : 9.97-13.51cm 3 / g). The adsorptivity of coal samples is governed by the micropores, transition pores, and Dn because they are positively correlated with the SSA. The outburst coal belongs to tectonically deformed coal (TDC) characterized by weak strength, rich microporosity, complex pore structure, strong adsorption capacity, but poor pore connectivity because of inkbottle pores. Therefore, the area of TDC is at high risk for gas outburst as there is a high-pressure gas sealing zone with abundant gas enrichment but limited gas migration and extraction

    Investigation of Digital Sun Sensor Technology with an N-Shaped Slit Mask

    Get PDF
    Nowadays sun sensors are being more widely used in satellites to determine the sunray orientation, thus development of a new version of sun sensor with lighter mass, lower power consumption and smaller size it of considerable interest. This paper introduces such a novel digital sun sensor, which is composed of a micro-electro-mechanical system (MEMS) mask with an N-shaped slit as well as a single linear array charge-coupled device (CCD). The sun sensor can achieve the measurement of two-axis sunray angles according to the three sun spot images on the CCD formed by sun light illumination through the mask. Given the CCD glass layer, an iterative algorithm is established to correct the refraction error. Thus, system resolution, update rate and other characteristics are improved based on the model simulation and system design. The test of sun sensor prototype is carried out on a three-axis rotating platform with a sun simulator. The test results show that the field of view (FOV) is ±60° × ±60° and the accuracy is 0.08 degrees of arc (3σ) in the whole FOV. Since the power consumption of the prototype is only 300 mW and the update rate is 14 Hz, the novel digital sun sensor can be applied broadly in micro/nano-satellites, even pico-satellites

    Learning Stackable and Skippable LEGO Bricks for Efficient, Reconfigurable, and Variable-Resolution Diffusion Modeling

    Full text link
    Diffusion models excel at generating photo-realistic images but come with significant computational costs in both training and sampling. While various techniques address these computational challenges, a less-explored issue is designing an efficient and adaptable network backbone for iterative refinement. Current options like U-Net and Vision Transformer often rely on resource-intensive deep networks and lack the flexibility needed for generating images at variable resolutions or with a smaller network than used in training. This study introduces LEGO bricks, which seamlessly integrate Local-feature Enrichment and Global-content Orchestration. These bricks can be stacked to create a test-time reconfigurable diffusion backbone, allowing selective skipping of bricks to reduce sampling costs and generate higher-resolution images than the training data. LEGO bricks enrich local regions with an MLP and transform them using a Transformer block while maintaining a consistent full-resolution image across all bricks. Experimental results demonstrate that LEGO bricks enhance training efficiency, expedite convergence, and facilitate variable-resolution image generation while maintaining strong generative performance. Moreover, LEGO significantly reduces sampling time compared to other methods, establishing it as a valuable enhancement for diffusion models

    An Accurate Virtual Signal Injection Control of MTPA for IPMSM with Fast Dynamic Response

    Get PDF
    A maximum torque per ampere (MTPA) control based on virtual signal injection for interior permanent magnet synchronous motor (IPMSM) with fast dynamic response is proposed in this paper. A small square wave signal is mathematically injected into current angle for accurately tracking MTPA points. The extracted derivative of elctromagnetic torque is utilized to compensate the initially set current angle to the real MTPA operation current angle. Due to the absence of bandpass and lowpass filters which are essential in the sinusoidal injected signal scheme, this method shows good dynamic response. By incorporating a modified equation for the torque after signal injection, the steady-state accuracy is also enhanced. The d- and q-axes current references are obtained through the current vector magnitude and optimal current angle instead of using the torque equation with nominal motor parameters, which guarantees the accuracy of the output torque. The proposed scheme is parameter independent and no real signal is injected to the current or voltage command. Thus, the problems of high-frequency signal injection method are avoided. A prototype is set up and experiments are carried out to verify effectiveness and robustness of the proposed control scheme

    Context-dependent pro- and anti-resection roles of ZKSCAN3 in the regulation of fork processing during replication stress

    Get PDF
    Uncontrolled resection of replication forks under stress can cause genomic instability and influence cancer formation. Extensive fork resection has also been implicated in the chemosensitivity of BReast CAncer gene BRCA-deficient cancers. However, how fork resection is controlled in different genetic contexts and how it affects chromosomal stability and cell survival remains incompletely understood. Here, we report a novel function of the transcription repressor ZKSCAN3 in fork protection and chromosomal stability maintenance under replication stress. We show disruption of ZKSCAN3 function causes excessive resection of replication forks by the exonuclease Exo1 and homologous DNA recombination/repair protein Mre11 following fork reversal. Interestingly, in BRCA1-deficient cells, we found ZKSCAN3 actually promotes fork resection upon replication stress. We demonstrate these anti- and pro-resection roles of ZKSCAN3, consisting of a SCAN box, Kruppel-associated box, and zinc finger domain, are mediated by its SCAN box domain and do not require the Kruppel-associated box or zinc finger domains, suggesting that the transcriptional function of ZKSCAN3 is not involved. Furthermore, despite the severe impact on fork structure and chromosomal stability, depletion of ZKSCAN3 did not affect the short-term survival of BRCA1-proficient or BRCA1-deficient cells after treatment with cancer drugs hydroxyurea, PARPi, or cisplatin. Our findings reveal a unique relationship between ZKSCAN3 and BRCA1 in fork protection and add to our understanding of the relationships between replication fork protection, chromosomal instability, and chemosensitivity

    Atomic quantum state transferring and swapping via quantum Zeno dynamics

    Full text link
    In this paper, we first demonstrate how to realize quantum state transferring (QST) from one atom to another based on quantum Zeno dynamics. Then, the QST protocol is generalized to realize the quantum state swapping (QSS) between two arbitrary atoms with the help of a third one. Furthermore, we also consider the QSS within a quantum network. The influence of decoherence is analyzed by numerical calculation. The results demonstrate that the protocols are robust against cavity decay.Comment: To appear in J. Opt. Soc. Am. B (JOSAB

    Gene therapy: an emerging therapy for hair cells regeneration in the cochlea

    Get PDF
    Sensorineural hearing loss is typically caused by damage to the cochlear hair cells (HCs) due to external stimuli or because of one’s genetic factors and the inability to convert sound mechanical energy into nerve impulses. Adult mammalian cochlear HCs cannot regenerate spontaneously; therefore, this type of deafness is usually considered irreversible. Studies on the developmental mechanisms of HC differentiation have revealed that nonsensory cells in the cochlea acquire the ability to differentiate into HCs after the overexpression of specific genes, such as Atoh1, which makes HC regeneration possible. Gene therapy, through in vitro selection and editing of target genes, transforms exogenous gene fragments into target cells and alters the expression of genes in target cells to activate the corresponding differentiation developmental program in target cells. This review summarizes the genes that have been associated with the growth and development of cochlear HCs in recent years and provides an overview of gene therapy approaches in the field of HC regeneration. It concludes with a discussion of the limitations of the current therapeutic approaches to facilitate the early implementation of this therapy in a clinical setting
    corecore