144 research outputs found

    Neutrino Physics with JUNO

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purposeunderground liquid scintillator detector, was proposed with the determinationof the neutrino mass hierarchy as a primary physics goal. It is also capable ofobserving neutrinos from terrestrial and extra-terrestrial sources, includingsupernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos,atmospheric neutrinos, solar neutrinos, as well as exotic searches such asnucleon decays, dark matter, sterile neutrinos, etc. We present the physicsmotivations and the anticipated performance of the JUNO detector for variousproposed measurements. By detecting reactor antineutrinos from two power plantsat 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4sigma significance with six years of running. The measurement of antineutrinospectrum will also lead to the precise determination of three out of the sixoscillation parameters to an accuracy of better than 1\%. Neutrino burst from atypical core-collapse supernova at 10 kpc would lead to ~5000inverse-beta-decay events and ~2000 all-flavor neutrino-proton elasticscattering events in JUNO. Detection of DSNB would provide valuable informationon the cosmic star-formation rate and the average core-collapsed neutrinoenergy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400events per year, significantly improving the statistics of existing geoneutrinosamples. The JUNO detector is sensitive to several exotic searches, e.g. protondecay via the pK++νˉp\to K^++\bar\nu decay channel. The JUNO detector will providea unique facility to address many outstanding crucial questions in particle andastrophysics. It holds the great potential for further advancing our quest tounderstanding the fundamental properties of neutrinos, one of the buildingblocks of our Universe

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    A Unified Algorithm for the Sliding Spotlight and TOPS Modes Data Processing in Bistatic Configuration of the Geostationary Transmitter with LEO Receivers

    No full text
    This paper deals with the imaging problem for sliding spotlight (SS) and terrain observation by progressive scan (TOPS) modes in bistatic configuration of the geostationary (GEO) transmitter with a low earth orbit satellite (LEO) receiver, named GTLR-BiSAR system. A unified imaging algorithm is proposed to process the GTLR-BiSAR data acquired in SS or TOPS modes. Our main contributions include four aspects. Firstly, the imaging geometry of this novel configuration is described in detail. Furthermore, the GTLR-BiSAR signal expressions were deduced in both time and frequency domains. These signal expressions provide great support for the design of processing the algorithm theoretically. Secondly, we present a unified deramping-based technique according to the special geometry of GTLR-BiSAR to overcome the azimuth spectrum aliasing phenomenon, which typically affects SS and TOPS data. Thirdly, the spatial variance of GTLR-BiSAR data were thoroughly analyzed based on the range-Doppler (RD) geolocation functions. On the basis of a former analysis, we put forward the azimuth variance correction strategy and modified the conventional chirp scaling function to solve the range variance problem. Finally, we completed the derivation of the two-dimensional spectrum after the range chirp scaling. On the basis of spectrum expressions, we compensated for the quadratic and residue phase, and the azimuth compression was completed by SPECAN operation. In addition, we provide a flow diagram to visually exhibit the processing procedures. At the end of this paper, the simulation and real data experiment results are presented to validate the effectiveness of the proposed algorithm

    A Unified Algorithm for the Sliding Spotlight and TOPS Modes Data Processing in Bistatic Configuration of the Geostationary Transmitter with LEO Receivers

    No full text
    This paper deals with the imaging problem for sliding spotlight (SS) and terrain observation by progressive scan (TOPS) modes in bistatic configuration of the geostationary (GEO) transmitter with a low earth orbit satellite (LEO) receiver, named GTLR-BiSAR system. A unified imaging algorithm is proposed to process the GTLR-BiSAR data acquired in SS or TOPS modes. Our main contributions include four aspects. Firstly, the imaging geometry of this novel configuration is described in detail. Furthermore, the GTLR-BiSAR signal expressions were deduced in both time and frequency domains. These signal expressions provide great support for the design of processing the algorithm theoretically. Secondly, we present a unified deramping-based technique according to the special geometry of GTLR-BiSAR to overcome the azimuth spectrum aliasing phenomenon, which typically affects SS and TOPS data. Thirdly, the spatial variance of GTLR-BiSAR data were thoroughly analyzed based on the range-Doppler (RD) geolocation functions. On the basis of a former analysis, we put forward the azimuth variance correction strategy and modified the conventional chirp scaling function to solve the range variance problem. Finally, we completed the derivation of the two-dimensional spectrum after the range chirp scaling. On the basis of spectrum expressions, we compensated for the quadratic and residue phase, and the azimuth compression was completed by SPECAN operation. In addition, we provide a flow diagram to visually exhibit the processing procedures. At the end of this paper, the simulation and real data experiment results are presented to validate the effectiveness of the proposed algorithm

    CdSe/CdS quantum dots co-sensitized TiO2 nanotube array photoelectrode for highly efficient solar cells

    No full text
    In this work, we designed and fabricated a novel one-dimensional CdSe/CdS@TiO2 core-shell nanotube array for quantum dots co-sensitized solar cells (QDSSCs) application. The three-component core-shell nanotube array structure was formed cascade by coating CdS nanoparticles with a successive ionic layer adsorption and reaction process and a thin CdSe layer by chemical bath deposition onto the vertical TiO2 nanotube arrays (TNAs), which enhanced the optical absorption in the visible region and presented an stepwise band-edge level structure to improve the charge separation. Under optimum conditions, the CdS/CdSe co-sensitized QDSSC demonstrated a power conversion efficiency (PCE) of 2.40% under 100 mW/cm(2) illumination of simulate sunlight. Furthermore, an improved QDSSC with a PCE up to 2.74% was obtained by sealed annealing of TNAs, due to the transformation of thin and smooth nanotube to thick and rough particle nanotube. (C) 2012 Elsevier Ltd. All rights reserved.National Natural Science Foundation of China [51072170, 21021002]; National High Technology Research and Development Program of China [2009AA03Z327]; National Basic Research Program of China [2012CB932900]; Alexander von Humboldt (AvH) Foundation of German

    Mechanism of Radix Astragali and Radix Salviae Miltiorrhizae Ameliorates Hypertensive Renal Damage

    No full text
    Hypertensive-induced renal damage (HRD) is an important public health and socioeconomic problem worldwide. The herb pair Radix Astragali- (RA-) Radix Salviae Miltiorrhizae (RS) is a common prescribed herbal formula for the treatment of HRD. However, the underlying mechanisms are unclear. The purpose of our study is to explore the mechanism of combination of Radix Astragali (RA) and Radix Salviae Miltiorrhizae (RS) ameliorating HRD by regulation of the renal sympathetic nerve. Thirty 24-week-old spontaneously hypertensive rats (SHRs) as the experimental group were randomly divided into the RA group, the RS group, the RA+RS group, the valsartan group, and the SHR group and six age-matched Wistar Kyoto rats (WKY) as the control group. After 4 weeks of corresponding drug administration, venipuncture was done to collect blood and prepare serum for analysis. A color Doppler ultrasound diagnostic instrument was used to observe renal hemodynamics. Enzyme-linked immunosorbent assay was used to detect norepinephrine (NE), epinephrine (E), angiotensin II (Ang II), and B-type brain natriuretic peptide (BNP). Simultaneously, the kidneys were removed immediately and observed under a transmission electron microscope to observe the ultrastructural changes. And the concentration of transforming growth factor-β1 (TGF-β1), angiotensin type 1 receptor (AT1), and nitric oxide (NO) was detected by immunohistochemistry. Our results showed that renal ultrasonography of rats showed no significant difference in renal size among groups. The RA+RS group had obviously decreased vascular resistance index. The levels of NE, E, BNP, Ang II, AT1, and TGF-β1 were decreased (P<0.05), and the density of NO was increased. Pathological damage of the kidney was alleviated. In conclusion, the results of the present study suggested sympathetic overexpression in the pathogenesis of HRD. The combination of RA and RS may inhibit the hyperexcitability of sympathetic nerves and maintain the normal physiological structure and function of kidney tissue and has a protective effect on the cardiovascular system

    Concentrated Multi-nozzle Electrospinning

    Get PDF
    The multi-nozzle electrospinning is under extensive investigations because it is an easy way to enhance the productivity and also feasible to produce special structure fibers such as core-shell fibers and to fabricate composite fibers of those polymers that cannot form blend solution in common solvent. Control over the multi-nozzle electrospinning fibers deposition has attracted increasing attentions. The most common method was to use the auxiliary electrode. However, the concentrated effect of the works of control multi-nozzle electrospinning deposit was inconspicuous. To enhance the controlling of multi-nozzle electrospinning deposition, a set-up based oppositely charged electrospinning was designed. In this set-up the air flow was used to transport neutralized nanofibers. This electrospinning method was named oppositely charged and air auxiliary electrospinning (OCAAES). The capacity of OCAAES in deposition area and pattern controlling were investigated. By the OCAAES, concentrated and several patterned nanofibers deposition were fabricated. Results showed that nanofiber deposition area and pattern of multi-nozzle electrospinning could be controlled actively, and nanofiber deposition could be fabricated in a quick thickening rate
    corecore