187 research outputs found

    Disturbance observer-based robust guidance for Mars atmospheric entry with input saturation

    Get PDF
    AbstractWith low-lifting capability taken into account, a robust guidance law for Mars entry vehicles with low lift-to-drag ratios, such as Mars Science Laboratory (MSL), is presented. Consider the nonlinear term in the drag dynamic equation and bounded disturbances as a lumped disturbance, and design a linear disturbance observer (DOB) to estimate it. With the consideration of the control input saturation, an innovative sliding surface and a virtual system are introduced to design the guidance law. Analyses of disturbance observer performance and Lyapunov-based transient performance are also presented. It is shown that the drag tracking error can be adjustable by explicit choices of design parameters. Simulation results confirm the effectiveness of the proposed guidance law

    Triangular BĂŠzier sub-surfaces on a triangular BĂŠzier surface

    Get PDF
    This paper considers the problem of computing the BĂŠzier representation for a triangular sub-patch on a triangular BĂŠzier surface. The triangular sub-patch is defined as a composition of the triangular surface and a domain surface that is also a triangular BĂŠzier patch. Based on de Casteljau recursions and shifting operators, previous methods express the control points of the triangular sub-patch as linear combinations of the construction points that are constructed from the control points of the triangular BĂŠzier surface. The construction points contain too many redundancies. This paper derives a simple explicit formula that computes the composite triangular sub-patch in terms of the blossoming points that correspond to distinct construction points and then an efficient algorithm is presented to calculate the control points of the sub-patch

    Multi-objective Anti-swing Trajectory Planning of Double-pendulum Tower Crane Operations using Opposition-based Evolutionary Algorithm

    Full text link
    Underactuated tower crane lifting requires time-energy optimal trajectories for the trolley/slew operations and reduction of the unactuated swings resulting from the trolley/jib motion. In scenarios involving non-negligible hook mass or long rig-cable, the hook-payload unit exhibits double-pendulum behaviour, making the problem highly challenging. This article introduces an offline multi-objective anti-swing trajectory planning module for a Computer-Aided Lift Planning (CALP) system of autonomous double-pendulum tower cranes, addressing all the transient state constraints. A set of auxiliary outputs are selected by methodically analyzing the payload swing dynamics and are used to prove the differential flatness property of the crane operations. The flat outputs are parameterized via suitable B\'{e}zier curves to formulate the multi-objective trajectory optimization problems in the flat output space. A novel multi-objective evolutionary algorithm called Collective Oppositional Generalized Differential Evolution 3 (CO-GDE3) is employed as the optimizer. To obtain faster convergence and better consistency in getting a wide range of good solutions, a new population initialization strategy is integrated into the conventional GDE3. The computationally efficient initialization method incorporates various concepts of computational opposition. Statistical comparisons based on trolley and slew operations verify the superiority of convergence and reliability of CO-GDE3 over the standard GDE3. Trolley and slew operations of a collision-free lifting path computed via the path planner of the CALP system are selected for a simulation study. The simulated trajectories demonstrate that the proposed planner can produce time-energy optimal solutions, keeping all the state variables within their respective limits and restricting the hook and payload swings.Comment: 14 pages, 14 figures, 6 table

    Changing trends of disease burden of stroke from 1990 to 2019 and its predictions among the Chinese population

    Get PDF
    ObjectiveThis study aimed to understand the temporal trends in the disease burden of stroke and its attributable risk factors in China, along with the future trends in the next 25 years, that is important for effective prevention strategies and improvement, and to provide new insights into the age- and sex-specific incidence, prevalence, mortality, disability-adjusted life-years (DALYs) and their trends from 1990 to 2019, and the prediction in the next 25 years.MethodsThe Global Burden of Disease Study (2019) was used to extract the data on age- and sex-specific incidence, mortality, and disability-adjusted life-years (DALYs) of stroke in China, 1990–2019. We estimated the estimated annual percentage change (EAPC) to access the temporal trends of the disease burden of stroke. The R package called Nordpred was used to perform an age-period-cohort analysis to predict the prevalence of stroke.ResultsThe number of incidence cases, deaths, and DALYs of stroke increased from 1990 to 2019. Overall downward trends were observed in the age-standardized incidence rate (ASIR) from 1990 to 2019. Significant temporal trends in mortality and DALYs of stroke were observed. High systolic blood pressure, smoking, and high-sodium diet were the main driving forces for stroke. The DALYs lost attributable to smoking were different for male and female patients. In the next 25 years, the number of new cases and deaths from stroke should continue to increase. The ASIR and age-standardized mortality rate (ASMR) should show a downward trend among male and female patients.ConclusionDespite the overall rates of stroke declined over the period from 1990 to 2019, the absolute number of people affected by stroke has substantially increased. There has been a substantial increase in the burden of stroke due to risk factors and will continue to increase in the next 25 years

    EBFT: Effective and Block-Wise Fine-Tuning for Sparse LLMs

    Full text link
    Existing methods for fine-tuning sparse LLMs often suffer from resource-intensive requirements and high retraining costs. Additionally, many fine-tuning methods often rely on approximations or heuristic optimization strategies, which may lead to suboptimal solutions. To address these issues, we propose an efficient and fast framework for fine-tuning sparse LLMs based on minimizing reconstruction error. Our approach involves sampling a small dataset for calibration and utilizing backpropagation to iteratively optimize block-wise reconstruction error, on a block-by-block basis, aiming for optimal solutions. Extensive experiments on various benchmarks consistently demonstrate the superiority of our method over other baselines. For instance, on the Wikitext2 dataset with LlamaV1-7B at 70% sparsity, our proposed EBFT achieves a perplexity of 16.88, surpassing the state-of-the-art DSnoT with a perplexity of 75.14. Moreover, with a structured sparsity ratio of 26\%, EBFT achieves a perplexity of 16.27, outperforming LoRA (perplexity 16.44). Furthermore, the fine-tuning process of EBFT for LlamaV1-7B only takes approximately 30 minutes, and the entire framework can be executed on a single 16GB GPU. The source code is available at https://github.com/sunggo/EBFT

    Silk fibroin microneedles for transdermal drug delivery: where do we stand and how far can we proceed?

    Get PDF
    Microneedles are a patient-friendly technique for delivering drugs to the site of action in place of traditional oral and injectable administration. Silk fibroin represents an interesting polymeric biomaterial because of its mechanical properties, thermal stability, biocompatibility and possibility of control via genetic engineering. This review focuses on the critical research progress of silk fibroin microneedles since their inception, analyzes in detail the structure and properties of silk fibroin, the types of silk fibroin microneedles, drug delivery applications and clinical trials, and summarizes the future development trend in this field. It also proposes the future research direction of silk fibroin microneedles, including increasing drug loading doses and enriching drug loading types as well as exploring silk fibroin microneedles with stimulation-responsive drug release functions. The safety and effectiveness of silk fibroin microneedles should be further verified in clinical trials at different stages.National Natural Science Foundation of China (Grant No. 51973144), College Nature Science Research Project of Jiangsu Province, China (Grant No. 20KJA540002), PAPD and Six Talent Peaks Project in Jiangsu Province (Grant No. SWYY-038) supported this work
    • …
    corecore