66 research outputs found

    Does metal pollution matter with C retention by rice soil?

    Get PDF
    Date of Acceptance: 17/07/2015 The research work was supported by the China Natural Science Foundation under a grant number of 40830528 and of 40671180. P.S. is a Royal Scoiety-Wolfson Research Merit Award holder and was supported by additional travel funds from a UK BBSRC China Partnership Award. P.S.’s contribution was supported by the UK-China Sustainable Agriculture Innovation Network (SAIN). D.C. was supported by an additional travel and collaboration funding from the China Ministry of Education under a “111” project.Peer reviewedPublisher PD

    More microbial manipulation and plant defense than soil fertility for biochar in food production: A field experiment of replanted ginseng with different biochars

    Get PDF
    The role of biochar–microbe interaction in plant rhizosphere mediating soilborne disease suppression has been poorly understood for plant health in field conditions. Chinese ginseng ( Panax ginseng C. A. Meyer) is widely cultivated in Alfisols across Northeast China, being often stressed severely by pathogenic diseases. In this study, the topsoil of a continuously cropped ginseng farm was amended at 20 t ha − 1, respectively, with manure biochar (PB), wood biochar (WB), and maize residue biochar (MB) in comparison to conventional manure compost (MC). Post-amendment changes in edaphic properties of bulk topsoil and the rhizosphere, in root growth and quality, and disease incidence were examined with field observations and physicochemical, molecular, and biochemical assays. In the 3 years following the amendment, the increases over MC in root biomass were parallel to the overall fertility improvement, being greater with MB and WB than with PB. Differently, the survival rate of ginseng plants increased insignificantly with PB but significantly with WB (14%) and MB (21%), while ginseng root quality was unchanged with WB but improved with PB (32%) and MB (56%). For the rhizosphere at harvest following 3 years of growing, the total content of phenolic acids from root exudate decreased by 56, 35, and 45% with PB, WB, and MB, respectively, over MC. For the rhizosphere microbiome, total fungal and bacterial abundance both was unchanged under WB but significantly increased under MB (by 200 and 38%), respectively, over MC. At the phyla level, abundances of arbuscular mycorrhizal and Bryobacter as potentially beneficial microbes were elevated while those of Fusarium and Ilyonectria as potentially pathogenic microbes were reduced, with WB and MB over MC. Moreover, rhizosphere fungal network complexity was enhanced insignificantly under PB but significantly under WB moderately and MB greatly, over MC. Overall, maize biochar exerted a great impact rather on rhizosphere microbial community composition and networking of functional groups, particularly fungi, and thus plant defense than on soil fertility and root growth

    More microbial manipulation and plant defense than soil fertility for biochar in food production: A field experiment of replanted ginseng with different biochars

    Get PDF
    The role of biochar–microbe interaction in plant rhizosphere mediating soil-borne disease suppression has been poorly understood for plant health in field conditions. Chinese ginseng (Panax ginseng C. A. Meyer) is widely cultivated in Alfisols across Northeast China, being often stressed severely by pathogenic diseases. In this study, the topsoil of a continuously cropped ginseng farm was amended at 20 t ha–1, respectively, with manure biochar (PB), wood biochar (WB), and maize residue biochar (MB) in comparison to conventional manure compost (MC). Post-amendment changes in edaphic properties of bulk topsoil and the rhizosphere, in root growth and quality, and disease incidence were examined with field observations and physicochemical, molecular, and biochemical assays. In the 3 years following the amendment, the increases over MC in root biomass were parallel to the overall fertility improvement, being greater with MB and WB than with PB. Differently, the survival rate of ginseng plants increased insignificantly with PB but significantly with WB (14%) and MB (21%), while ginseng root quality was unchanged with WB but improved with PB (32%) and MB (56%). For the rhizosphere at harvest following 3 years of growing, the total content of phenolic acids from root exudate decreased by 56, 35, and 45% with PB, WB, and MB, respectively, over MC. For the rhizosphere microbiome, total fungal and bacterial abundance both was unchanged under WB but significantly increased under MB (by 200 and 38%), respectively, over MC. At the phyla level, abundances of arbuscular mycorrhizal and Bryobacter as potentially beneficial microbes were elevated while those of Fusarium and Ilyonectria as potentially pathogenic microbes were reduced, with WB and MB over MC. Moreover, rhizosphere fungal network complexity was enhanced insignificantly under PB but significantly under WB moderately and MB greatly, over MC. Overall, maize biochar exerted a great impact rather on rhizosphere microbial community composition and networking of functional groups, particularly fungi, and thus plant defense than on soil fertility and root growth

    Biochar has no effect on soil respiration across Chinese agricultural soils

    Get PDF
    This work was supported by NSFC (41371298 and 41371300), Ministry of Science and Technology (2013GB23600666 and 2013BAD11B00), and Ministry of Education of China (20120097130003). The international cooperation was funded under a “111” project by the State Agency of Foreign Expert Affairs of China and jointly supported under a grant for Priority Disciplines in Higher Education by the Department of Education, Jiangsu Province, China; The work was also a contribution to the cooperation project of “Estimates of Future Agricultural GHG Emissions and Mitigation in China” under the UK-China Sustainable Agriculture Innovation Network (SAIN). Pete Smith contributed to this work under a UK BBSRC China Partnership Award. The authors are grateful to Yuming Liu, Bin Zhang, Xiao Li, Gang Wu, Jinjin Qu and Yinxin Ye and Dongqi Liu for their contribution to field experiments, and to Rongjun Bian and Qaiser Hussain for their participation in discussions of the data analysis and interpretation, and to Xinyan Yu and Jiafang Wang for their assistance in lab works.Peer reviewedPostprin

    Whole exome sequencing identifies frequent somatic mutations in cell-cell adhesion genes in chinese patients with lung squamous cell carcinoma

    Get PDF
    Lung squamous cell carcinoma (SQCC) accounts for about 30% of all lung cancer cases. Understanding of mutational landscape for this subtype of lung cancer in Chinese patients is currently limited. We performed whole exome sequencing in samples from 100 patients with lung SQCCs to search for somatic mutations and the subsequent target capture sequencing in another 98 samples for validation. We identified 20 significantly mutated genes, including TP53, CDH10, NFE2L2 and PTEN. Pathways with frequently mutated genes included those of cell-cell adhesion/Wnt/Hippo in 76%, oxidative stress response in 21%, and phosphatidylinositol-3-OH kinase in 36% of the tested tumor samples. Mutations of Chromatin regulatory factor genes were identified at a lower frequency. In functional assays, we observed that knockdown of CDH10 promoted cell proliferation, soft-agar colony formation, cell migration and cell invasion, and overexpression of CDH10 inhibited cell proliferation. This mutational landscape of lung SQCC in Chinese patients improves our current understanding of lung carcinogenesis, early diagnosis and personalized therapy

    Utility-based scheduling in wireless multi-hop networks over non-deterministic fading channels

    No full text
    In this paper, an innovative scheduling scheme is proposed for interference-limited wireless multi-hop networks with non-deterministic fading channels. The scheduling problem is considered as a network utility maximization (NUM) problem subject to link rate constraints. By jointly taking into account of the link scheduling and the statistical variations of signal and interference power, the convex sets for the NUM are derived. Two types of non-deterministic fading channels (i.e., Rayleigh fading channel and Ricean fading channel) are characterized into our NUM models as examples. To solve the convex optimization problem, the subgradient projection method based on dual decomposition is employed. Then, a heuristic algorithm is designed for the TDM mode wireless multi-hop networks by minimizing the discrepancy between the expected network cost and the optimal one in each timeslot. At last, the source–destination session rate and network utility are evaluated in a dedicated wireless multi-hop network scenario. The numerical results demonstrate that the session rates convergence and the network utility is improved by our proposed scheme

    Study on the mechanism of water inrush in the arid western mining area

    No full text
    The analysis found that the coal mining process in the western mining area has the mining loss and disaster effect of the water-rich aquifer of the coal seam roof, which is mainly manifested by the overburden water in the roof. On this basis, the formation and development of the separation water of the roof is proposed, and the mechanism of the water inrush from the layer is revealed. It is found that there is hydrostatic pressure and hydrodynamic pressure in the separated water, under the combined action of bed separation water pressure, the mining-induced fracture and water-isolation layer tension fracture are connected, which causes water inrushing in the coal working face of the mine, and provides a theoretical guarantee for the large-scale development of coal resources in western mining areas

    Effect of Municipal Biowaste Biochar on Greenhouse Gas Emissions and Metal Bioaccumulation in a Slightly Acidic Clay Rice Paddy

    No full text
    A field trial was performed to investigate the effect of municipal biowaste biochar (MBB) on rice and wheat growth, metal bioaccumulation, and greenhouse gas emissions in a rice paddy in eastern China. MBB was amended in 2010 before rice transplanting at rates of 0 and 40 t ha-1 in a field experiment lasting one cropping year. MBB soil amendment significantly increased soil pH, total soil organic carbon, and total nitrogen. The growth and grain yield of rice and wheat was not affected with MBB application at 40 t ha-1. MBB amendment did not influence the soil availability of Pb, Cu, and Ni, but significantly increased the soil availability of Zn and decreased the soil availability of Cd during both rice and wheat seasons. While MBB did not change the bioaccumulation of Pb, Cu, and Ni, the rice and wheat Cd accumulation was significantly reduced, and wheat Zn accumulation slightly increased with MBB amendment. Furthermore, total N2O emission during both rice and wheat seasons was greatly decreased, though total seasonal CH4 emission was significantly increased in the rice season. On the other hand, soil CO2 emission remained unaffected across crop seasons. Thus, MBB can be used in rice paddy for low carbon and low-Cd grain production, but the long-term effects remain unknown
    corecore