4,185 research outputs found

    Quantitative Analysis of Breast Shapes

    Full text link
    Institute of Textiles and ClothingRefereed conference pape

    CLEC5A-mediated enhancement of the inflammatory response in myeloid cells contributes to influenza virus pathogenicity in vivo

    Get PDF
    Human infections with influenza viruses exhibit mild to severe clinical outcomes as a result of complex virus-host interactions. Induction of inflammatory mediators via pattern recognition receptors may dictate subsequent host responses for pathogen clearance and tissue damage. We identified that human C-type lectin domain family 5 member A (CLEC5A) interacts with the hemagglutinin protein of influenza viruses expressed on lentiviral pseudoparticles through lectin screening. Silencing CLEC5A gene expression, blocking influenza-CLEC5A interactions with anti-CLEC5A antibodies, or dampening CLEC5A-mediated signaling using a spleen tyrosine kinase inhibitor consistently reduced the levels of proinflammatory cytokines produced by human macrophages without affecting the replication of influenza A viruses of different subtypes. Infection of bone marrow-derived macrophages from CLEC5A-deficient mice showed reduced levels of tumor necrosis factor alpha (TNF-α) and IP-10 but elevated alpha interferon (IFN-α) compared to those of wild-type mice. The heightened type I IFN response in the macrophages of CLEC5A-deficient mice was associated with upregulated TLR3 mRNA after treatment with double-stranded RNA. Upon lethal challenges with a recombinant H5N1 virus, CLEC5A-deficient mice showed reduced levels of proinflammatory cytokines, decreased immune cell infiltration in the lungs, and improved survival compared to the wild-type mice, despite comparable viral loads noted throughout the course of infection. The survival difference was more prominent at a lower dose of inoculum. Our results suggest that CLEC5A-mediated enhancement of the inflammatory response in myeloid cells contributes to influenza pathogenicity in vivo and may be considered a therapeutic target in combination with effective antivirals. Well-orchestrated host responses together with effective viral clearance are critical for optimal clinical outcome after influenza infections.published_or_final_versio

    GIVE: portable genome browsers for personal websites.

    Get PDF
    Growing popularity and diversity of genomic data demand portable and versatile genome browsers. Here, we present an open source programming library called GIVE that facilitates the creation of personalized genome browsers without requiring a system administrator. By inserting HTML tags, one can add to a personal webpage interactive visualization of multiple types of genomics data, including genome annotation, "linear" quantitative data, and genome interaction data. GIVE includes a graphical interface called HUG (HTML Universal Generator) that automatically generates HTML code for displaying user chosen data, which can be copy-pasted into user's personal website or saved and shared with collaborators. GIVE is available at: https://www.givengine.org/

    Deep generative modeling for single-cell transcriptomics.

    Get PDF
    Single-cell transcriptome measurements can reveal unexplored biological diversity, but they suffer from technical noise and bias that must be modeled to account for the resulting uncertainty in downstream analyses. Here we introduce single-cell variational inference (scVI), a ready-to-use scalable framework for the probabilistic representation and analysis of gene expression in single cells ( https://github.com/YosefLab/scVI ). scVI uses stochastic optimization and deep neural networks to aggregate information across similar cells and genes and to approximate the distributions that underlie observed expression values, while accounting for batch effects and limited sensitivity. We used scVI for a range of fundamental analysis tasks including batch correction, visualization, clustering, and differential expression, and achieved high accuracy for each task

    Transparency in health economic modeling : options, issues and potential solutions

    Get PDF
    Economic models are increasingly being used by health economists to assess the value of health technologies and inform healthcare decision making. However, most published economic models represent a kind of black box, with known inputs and outputs but undisclosed internal calculations and assumptions. This lack of transparency makes the evaluation of the model results challenging, complicates comparisons between models, and limits the reproducibility of the models. Here, we aim to provide an overview of the possible steps that could be undertaken to make economic models more transparent and encourage model developers to share more detailed calculations and assumptions with their peers. Scenarios with different levels of transparency (i.e., how much information is disclosed) and reach of transparency (i.e., who has access to the disclosed information) are discussed, and five key concerns (copyrights, model misuse, confidential data, software, and time/resources) pertaining to model transparency are presented, along with possible solutions. While a shift toward open-source models is underway in health economics, as has happened before in other research fields, the challenges ahead should not be underestimated. Importantly, there is a pressing need to find an acceptable trade-off between the added value of model transparency and the time and resources needed to achieve such transparency. To this end, it will be crucial to set incentives at different stakeholder levels. Despite the many challenges, the many benefits of publicly sharing economic models make increased transparency a goal worth pursuing

    Demon-like Algorithmic Quantum Cooling and its Realization with Quantum Optics

    Get PDF
    The simulation of low-temperature properties of many-body systems remains one of the major challenges in theoretical and experimental quantum information science. We present, and demonstrate experimentally, a universal cooling method which is applicable to any physical system that can be simulated by a quantum computer. This method allows us to distill and eliminate hot components of quantum states, i.e., a quantum Maxwell's demon. The experimental implementation is realized with a quantum-optical network, and the results are in full agreement with theoretical predictions (with fidelity higher than 0.978). These results open a new path for simulating low-temperature properties of physical and chemical systems that are intractable with classical methods.Comment: 7 pages, 5 figures, plus supplementarity material

    recount3: summaries and queries for large-scale RNA-seq expression and splicing

    Get PDF
    We present recount3, a resource consisting of over 750,000 publicly available human and mouse RNA sequencing (RNA-seq) samples uniformly processed by our new Monorail analysis pipeline. To facilitate access to the data, we provide the recount3 and snapcount R/Bioconductor packages as well as complementary web resources. Using these tools, data can be downloaded as study-level summaries or queried for specific exon-exon junctions, genes, samples, or other features. Monorail can be used to process local and/or private data, allowing results to be directly compared to any study in recount3. Taken together, our tools help biologists maximize the utility of publicly available RNA-seq data, especially to improve their understanding of newly collected data. recount3 is available from http://rna.recount.bio
    • 

    corecore