104 research outputs found

    Dynamic Properties of Coupled Maps

    Get PDF
    Dynamic properties are investigated in the coupled system of three maps with symmetric nearest neighbor coupling and periodic boundary conditions. The dynamics of the system is controlled by certain coupling parameters. We show that, for some values of the parameters, the system exhibits nontrivial collective behavior, such as multiple bifurcations, and chaos. We give computer simulations to support the theoretical predictions

    Mesenchymal Stem Cell-Derived Exosomes for Myocardial Infarction Treatment

    Get PDF
    Myocardial infarction (MI) is a major cause of morbidity and mortality in modern society. Over the past decades, mesenchymal stem cell (MSCs)-based therapy has shown promising results in the treatment of MI due to their unique properties of multi-differentiation ability, immune-privileged phenotype and paracrine activity. Recently, MSC-derived exosomes (MSC-EXO) have been proposed as a promising therapeutic strategy for MI with their ability to inhibit cardiomyocyte apoptosis and stimulate vascular angiogenesis. They also aid immunoregulation and rejuvenation of cardiomyocyte senescence by transporting their unique content such as proteins, lipids, and miRNAs. Compared with MSC transplantation, MSC-EXO administration has shown several advantages, including lower toxicity and immunogenicity and no risk of tumor formation. Nonetheless the potential mechanisms underlying MSC-EXO-based therapy for MI are not fully understood. In addition, lack of modification of MSC-EXOs can impact therapeutic efficacy. It is vital to optimize MSC-EXO and enhance their therapeutic efficacy for MI. We summarize the recent advances regarding biological characteristics, therapeutic potential and mechanisms, and optimal approaches to the use of MSC-EXOs in the treatment of MI

    Lithium Carbonate in the Treatment of Graves’ Disease with ATD-Induced Hepatic Injury or Leukopenia

    Get PDF
    Objective. GD with ATD-induced hepatic injury or leukopenia occurs frequently in clinical practice. The purpose of the present study was to observe the clinical effect of lithium carbonate on hyperthyroidism in patients with GD with hepatic injury or leukopenia. Methods. Fifty-one patients with GD with hepatic injury or leukopenia participated in the study. All patients were treated with lithium carbonate, in addition to hepatoprotective drugs or drugs that increase white blood cell count. Thyroid function, liver function, and white blood cells were measured. Clinical outcomes were observed after a 1-year follow-up. Results. After treatment for 36 weeks, symptoms of hyperthyroidism and the level of thyroid hormones were improved and liver function, and white blood cells returned to a normal level. Twelve patients (23.5%) obtained clinical remission, 6 patients (11.8%) relapsed after withdrawal, 25 patients (49.0%) received radioiodine therapy, and 8 patients (15.7%) underwent surgical procedures after lithium carbonate treatment. Conclusion. Lithium carbonate has effects on the treatment of mild-to-moderate hyperthyroidism caused by GD, and it is particularly suitable for patients with ATD-induced hepatic injury or leukopenia

    Long-term effects of straw and straw-derived biochar on soil aggregation and fungal community in a rice–wheat rotation system

    Get PDF
    Background Soil aggregation is fundamental for soil functioning and agricultural productivity. Aggregate formation depends on microbial activity influencing the production of exudates and hyphae, which in turn act as binding materials. Fungi are also important for improving soil quality and promoting plant growth in a symbiotic manner. There is a scarcity of findings comparing the long-term impacts of different yearly double-crop straw return modes (e.g., straw return to the field and straw-derived biochar return to the field) on soil aggregation and fungal community structure in rice–wheat rotation systems. Methods The effects of 6-year continuous straw and straw-derived biochar amendment on soil physicochemical properties and the fungal community were evaluated in an intensively managed crop rotation system (rice–wheat). Soil samples of different aggregates (macroaggregates, microaggregates, and silt clay) from four different fertilization regimes (control, CK; traditional inorganic fertilization, CF; straw returned to field, CS; straw-derived biochar addition, CB) were obtained, and Illumina MiSeq sequencing analysis of the fungal internal transcribed spacer gene was performed. Results Compared to CF, CS and CB enhanced soil organic carbon, total nitrogen, and aggregation in 0–20 and 20–40 cm soil, with CB exhibiting a stronger effect. Additionally, agrowaste addition increased the mean weight diameter and the geometric diameter and decreased the fractal dimension (p < 0.05). Principal coordinates analysis indicated that fertilization management affected fungal community structure and aggregation distribution. In addition, CS increased fungal community richness and diversity, compared to CK, CB decreased these aspects. Ascomycota, unclassified_k_Fungi, and Basidiomycota were the dominant phyla in all soil samples. At the genus level, CB clearly increased fungi decomposing biosolids (Articulospora in macroaggregates in 0–20 cm soil and Neurospora in macroaggregates in 20–40 cm soil); decreased pathogenic fungi (Monographella in macroaggregates and Gibberella in microaggregates in 0–20 cm soil) and CO2-emission-related fungi (Pyrenochaetopsis in microaggregates and silt clay in 0–40 cm soil) (p < 0.05). Straw and biochar with inorganic fertilizer counteracted some of the adverse effects of the inorganic fertilizer with biochar showing better effects than straw

    Mono- and bi-functional arenethiols as surfactants for gold nanoparticles: synthesis and characterization

    Get PDF
    Stable gold nanoparticles stabilized by different mono and bi-functional arenethiols, namely, benzylthiol and 1,4-benzenedimethanethiol, have been prepared by using a modified Brust's two-phase synthesis. The size, shape, and crystalline structure of the gold nanoparticles have been determined by high-resolution electron microscopy and full-pattern X-ray powder diffraction analyses. Nanocrystals diameters have been tuned in the range 2 ÷ 9 nm by a proper variation of Au/S molar ratio. The chemical composition of gold nanoparticles and their interaction with thiols have been investigated by X-ray photoelectron spectroscopy. In particular, the formation of networks has been observed with interconnected gold nanoparticles containing 1,4-benzenedimethanethiol as ligand

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Assessment and prediction of carbon storage based on land use/land cover dynamics in the coastal area of Shandong Province

    No full text
    Changes in land use and land cover (LULC) promote regional carbon storage capacity or trigger carbon depletion, which in turn exhibited significant impact on global climate change. Understanding the impacts of LULC on changes of carbon storage in coastal areas plays a critical role in the conservation of regional ecosystems and sustainable socio-economic development. The present study acted the coastal area of Shandong Province as an example to analyze the relationship between LULC and carbon storage combined with the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) and Patch-generating Land Use Simulation (PLUS) model. We further predicted the variation of carbon storage through the change of LULC types under three scenarios in 2030. Our results showed that cropland (which decreased by 9.41%) and built-up land (which increased by 7.66%) underwent the most significant changes over the past 20 years, while forest, grassland, wetland, water and bare land underwent less changes. As the dominant land type, cropland was also the most important carbon pool with medium carbon storage. Areas with high carbon storage were distributed in the mountains and hills, where the main land types were grassland and forest. In addition, wetland located in the Yellow River Delta also stores large amounts of carbon. Accordingly, areas with low carbon storage were widely distributed in built-up land of urban metropolitan regions. We pinpointed that the carbon storage in the coastal area of Shandong Province lost 47.96×106Mg due to the increasing of built-up land and the decreasing of cropland and forest, while ecological protection measures would effectively enhance regional carbon storage. Specifically, the regional carbon storage could be increased by 6.64×106Mg when the conversion of cropland, forest and grassland into built-up land was reduced by 20% and the conversion of wetland and water into built-up land was reduced by 30% (under the ecological priority scenario (EP)). We believe the present study could be a valid reference for administrators to develop policies in more reasonable planning of land use and urban development to achieve carbon peaking and carbon neutrality (“Dual Carbon” goals)
    corecore