
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

171,000 190M

TOP 1%154

6,300



1

Chapter

Mesenchymal Stem Cell-Derived 
Exosomes for Myocardial 
Infarction Treatment
Huifeng Zheng, Yimei Hong, Bei Hu, Xin Li and Yuelin Zhang

Abstract

Myocardial infarction (MI) is a major cause of morbidity and mortality in modern 
society. Over the past decades, mesenchymal stem cell (MSCs)-based therapy has 
shown promising results in the treatment of MI due to their unique properties of 
multi-differentiation ability, immune-privileged phenotype and paracrine activity. 
Recently, MSC-derived exosomes (MSC-EXO) have been proposed as a promising 
therapeutic strategy for MI with their ability to inhibit cardiomyocyte apoptosis and 
stimulate vascular angiogenesis. They also aid immunoregulation and rejuvenation 
of cardiomyocyte senescence by transporting their unique content such as proteins, 
lipids, and miRNAs. Compared with MSC transplantation, MSC-EXO administration 
has shown several advantages, including lower toxicity and immunogenicity and no 
risk of tumor formation. Nonetheless the potential mechanisms underlying MSC-
EXO-based therapy for MI are not fully understood. In addition, lack of modification 
of MSC-EXOs can impact therapeutic efficacy. It is vital to optimize MSC-EXO and 
enhance their therapeutic efficacy for MI. We summarize the recent advances regard-
ing biological characteristics, therapeutic potential and mechanisms, and optimal 
approaches to the use of MSC-EXOs in the treatment of MI.

Keywords: mesenchymal stem cells, exosome, myocardial infarction, treatment, 
therapeutic effect

1. Introduction

Myocardial infarction (MI) results in irreversible loss of cardiomyocytes due to a 
restricted blood supply and is the major cause of morbidity and mortality worldwide. 
It has been estimated to account for 80% of deaths in patients with ischemic heart 
disease worldwide, and its prevalence continues to increase every year leading to 
a significant medical, social, and financial burden [1]. Despite the availability of 
advanced surgical interventions and medications including primary percutaneous 
coronary intervention, angiotensin-converting enzyme drugs and β-blockers, there 
remains no effective means to prevent cardiomyocyte loss due to myocardial ischemia 
[2]. The only cure for this devastating disease is heart transplantation but this is 
restricted by its high cost, a shortage of donor hearts, and the occurrence of immune 
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rejection following transplantation [3]. Exploration of novel therapies for left ven-
tricle remodeling and dysfunction following infarction is urgently needed.

Over the past decades, stem cell-based therapy has become a promising strategy 
to treat MI with significant progress made in animal studies and clinical trials [4–6]. 
Among all types of stem cell under investigation, mesenchymal stem cells (MSCs) 
have garnered huge interest due to their easy isolation, high reproductive activity, 
differentiation capability and immunomodulatory properties [7, 8]. MSCs can be 
isolated from multiple tissues or cells including bone marrow, adipose tissue, umbili-
cal cord blood and even pluripotent stem cells [9–12]. There is accumulating evidence 
that MSCs are promising candidates for MI treatment [13–15]. More importantly, 
it is now widely accepted that the cardioprotective effects of MSC-based therapy in 
MI are due to their strong paracrine effects, rather than trans-differentiation ability 
[7, 16–18]. Therefore, researchers are increasingly huge interested in the therapeutic 
efficacy of MSC-derived bioactive molecules, especially exosome (EXO), that are 
considered major components of the paracrine effect in MSC-based therapy [19, 20]. 
EXO, a subgroup of extracellular vesicles (EVs), are 40–160 nm diameter membrane-
bound vesicles that can be found in almost all biological fluids. It has been well 
documented that MSC-EXO exert their cardioprotective effects in MI by delivering 
diverse biological molecules, including non-coding RNA, DNA, lipids and proteins 
[21–24]. More importantly, compared with MSC transplantation, MSC-EXO have 
several advantages such as easier storage and transplantation, less immune rejection, 
minimum risk of immunogenicity and no risk of tumor formation [25]. We discuss 
the current understanding of the biological characteristics, therapeutic effects and 
potential mechanisms of MSC-based therapy in MI. We also highlight the current 
challenges and potential approaches to improve the efficacy and production of MSC-
EXO in regenerative medicine to guide their future clinical application.

2. Characterization and Isolation of MSC-EXO

EVs are bilayer lipid membrane-bound subcellular vesicles released by all types 
of cells and present in all body fluids. According to MISEV2018, EVs are divided 
into “small EVs” (sEVs, <100 nm or <200 nm) and “medium/large EVs”(m/lEVs, 
>200 nm) respectively [26]. EXO are sEVs approximately 40–160 nm in diameter 
(100 nm on average) and the main subclass of EVs [27]. The biogenesis of EXO 
begins with inward budding to form an early endosome. Finally, EXO are built when 
multi vesicular bodies (MVBs, late endosomes) fuse with plasma membrane and are 
secreted into the extracellular space [28, 29]. MSC-EXO express EXO-specific markers 
CD9, CD63, CD81, Alix and Tsg101 as well as MSC surface markers including CD29, 
CD44, CD90 and CD73. Among these, CD29 and CD44 have been identified previ-
ously as the specific biomarkers for MSC-EXO [30, 31]. The size and concentration of 
EXO can be characterized by nanoparticle tracking analysis (NTA) and transmission 
electron microscopy (TEM) [32]. Recently, plasmonic scattering microscopy has been 
applied to image exosomes and analyze biomarkers [33].

It is difficult to show whole landscape of EXO dispersed in solution. Therefore, 
purification of EXO is of importance for EXO definition. EXO are distributed through-
out body fluids and this represents a challenge to their isolation. EXO are secreted 
into body fluids such as blood, urine, saliva, lymph, breast milk, cerebrospinal fluid 
and pericardial fluid etc. [34]. EXO components reflects the state of the original cell. 
Different methods of isolation of EXO varies from various body fluids. Meanwhile, 
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the extraction result differs from types of biological fluid. Which was optimal remains 
controversial [35]. Isolation of abundant EXO can help in the assessment of their 
biological functions [36]. Several recent alternative methods ranging from conven-
tional to newly developed techniques to isolate and purify EXO are summarized in 
Table 1. Different methods for EXO isolation have different advantages and disadvan-
tages. During isolation, ultracentrifugation and density gradient centrifugation are 
the most commonly used techniques [47]. Currently, several new methods have been 
established to facilitate high-throughput and high-purity manufacture of EXO. The 
characterization and isolation of MSC-EXO are summarized in Figure 1.

No. Methods of EXO 

isolation

Advantages and disadvantages Ref.

1 Ultracentrifugation 1. Most widely used

2. Gold standard for exosome separation

3. A series of speed centrifugation

4. Time consuming

[37]

2 Density gradient 

centrifugation

1. Sorts:

Sucrose density gradient

Iodixanol density gradient

Optiprep density gradient

2. Improve purity of exosomes

3. Sucrose density gradient cannot effectively separate 

EXO and retroviruses

4. Time consuming and complex procedure

[38]

3 Chromatography 

(size-based isolation 

techniques)

1. Sorts:

Mini-size exclusion chromatography (mini-SEC)

Size exclusion chromatography

2. Quick, easy, small material consumption

3. May be applied with other particles of similar size

[39]

4 Ultrafiltration 

(size-based isolation 

techniques)

1. Uses ultrafiltration membranes with different molecu-

lar weight cutoffs (MWCO)

2. Low cost and high enrichment efficiency

3. Low purity and non-specific binding of EXO

[40]

5 Tangential flow 

filtration (size-based 

isolation techniques)

1. Using a cutoff TFF cartridge

2. Fluid flows tangentially across the surface, avoiding 

filter cake formation

3. Fast and efficient

4. Volume is limited by the instrument dead volume

[41]

6 Polymer-based 

precipitation 

separation

1. Uses polyethylene glycol (PEG) as a medium

2. Easy to operate with short analysis time

3. Polymer is difficult to remove

[42]

7 Immunoaffinity 

chromatography 

(IAC)

1. Based on the specific binding of antibodies and ligands

2. Storage conditions of EXO are relatively harsh and are 

not suitable for large-scale separation of EXO

[43]
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No. Methods of EXO 

isolation

Advantages and disadvantages Ref.

8 Microfluidic 

technologies

1. Sorts

Physical-property-based microfluidics

Immunoaffinity-based microfluidics

2. Miniaturization, integration, high-throughput capac-

ity, low-time consumption

3. Specialized equipment needed

[44]

9 Deterministic 

lateral displacement 

separation

1. Uses tilted pillar arrays that generate a fluid bifurcation 

and a unique number of streamlines between the gaps

2. Low separation throughput; particle adhesion and 

clogging; complex and bulky experimental setup

[45]

10 Acoustic fluid 

separation

1. Uses ultrasound waves to exert radiation forces on 

particles

2. Highly controllable, and versatile

3. The device is relatively low in a single channel micro-

fluidic device

[46]

Table 1. 
Methods of MSC-EXO isolation.

Figure 1. 
Characterization and isolation of MSC-EXO.
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3. The bioactive constituents of MSC-EXO for MI treatment

MSC-EXO exert their benefits in various diseases by enclosing and transporting a 
vast array of molecules [48]. It has been demonstrated that exosomal components are 
almost dependent on the source cell and cellular conditions [25, 49, 50]. Generally, 
EXO contain multiple characteristic molecules with typical physiological functions 
[51–53]. MSC-EXO comprise a variety of substances, including many kinds of pro-
teins and a lot of noncoding RNA, including microRNAs (miRNAs) and long noncod-
ing RNAs (lncRNA) [54]. These components can act as paracrine factors, mediating 
cell-to-cell signaling and communication. More importantly, they can be used as 
prognostic and diagnostic markers [55, 56].

3.1 Exosomal miRNAs in MSC-EXO for MI treatment

miRNAs are endogenous and 19–25 nucleotides in size. They can be isolated from 
cells, tissues and body fluids [57]. By pairing to the mRNAs of protein-coding genes, 
miRNAs play an important role in regulating post-transcriptional silencing of target 
genes [58, 59]. There is accumulating evidence that miRNAs are enriched in MSC-
EXO and are the major bioactive constituents [60–62]. In the last few decades, the 
cardioprotective role of MSC-derived exosomal miRNAs has attracted huge attention 
[63]. It has been well documented that many MSC-derived exosomal miRNAs have 
beneficial functions in MI treatment [64]. Importantly, several potential mechanisms 
have been identified such as promotion of angiogenesis, reduction of cell death and an 
antifibrotic effect [65]. Enhanced angiogenesis is one of the important repair mecha-
nisms underlying MSC-EXO-based therapy for MI [66–68]. Through direct miRNAs 
transfer, MSC-EXO convey their proangiogenic signals to injured cardiomyocytes 
[69]. Previous study has shown that silenced MSC-derived exosomal miR-210 largely 
lost its proangiogenic effect. Further experimental study revealed that exosomal 
miR-210 improves angiogenesis of MSC-EXO via targeting of Efna3 [70]. Zhu et al. 
demonstrated that macrophage migration inhibitory factor (MIF) could enhance 
the pro-angiogenic effect of MSC-EXO by enhancing the level of miR-133a-3p via 
regulation of the AKT signaling pathway [71]. miR-221 is one of the most studied 
miRNAs. A recent study reported that up-regulated exosomal miR-221-3p derived 
from senescent MSCs improved their ability of angiogenesis, migration and prolifera-
tion, and suppressed apoptosis by regulating the PTEN/AKT pathway [72]. Ma et al. 
revealed that miR-132-electroporated MSC-EXO could promote angiogenesis both 
in vitro and in vivo by downregulating RASA1 [23]. These studies show that MSC-
EXO improve angiogenesis by transmitting miRNAs via various biological signaling 
pathway following MI.

There is increasing evidence that ameliorating cardiomyocyte death is another 
major mechanism by which EXO restore cardiac function following MI. MSC-EXO 
reduce myocardial cell death via multiple mechanisms including an anti-apoptosis 
action, inhibition of pyroptosis and an anti-inflammatory effect [73]. Apoptosis is 
programmed cell death that is strongly associated with myocardial ischemia [74]. 
Previous studies have proved that MSCs have an anti-apoptotic effect through secre-
tion of exosomes enriched in miRNAs [75]. Hypoxia-elicited MSC-EXO (Hypo-EXO) 
facilitates cardiac repair by preventing cell death in MI via delivery of miR-125b. 
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Mechanistically, miR-125b-5p suppresses apoptosis of cardiomyocytes by down-
regulating the expression of apoptotic genes p53 and BAK1 [63]. Another study 
demonstrated that EXO derived from miR-146a-modified adipose-MSCs attenuated 
MI via inhibition of apoptosis, the inflammatory response, and fibrosis in a rat model 
of AMI by targeting early growth response factor 1(EGR1) [76]. Wang et al. reported 
that adipose-MSC-EXO carrying miR-671 reduced the apoptosis of cardiomyocytes 
and alleviated myocardial fibrosis and inflammation via inactivation of the TGFBR2/
Smad2 Axis [77]. miR-153-3p plays an important role in modulating cell proliferation, 
apoptosis and angiogenesis. It has been illustrated that EXO-miR-153-3p significantly 
reduces apoptosis of endothelial cells and cardiomyocytes and promotes their viabil-
ity. By targeting ANGPT1, miR-153-3p can regulate the VEGF/VEGFR2/PI3K/AKT/
eNOS pathways to prevent hypoxic damage to endothelial cells and cardiomyocytes 
[78]. Furthermore, a growing number of studies have shown that stem cell-derived 
exosomal miRNAs, such as miR-150-5p, miR-126, and miR-486-5p, demonstrate 
antiapoptotic activity in MI treatment [79–81]. These findings indicate that the 
anti-apoptotic effect of MSC-EXO can be partly ascribed to the delivery of some anti-
apoptotic miRNAs.

Autophagy is a self-destructive process during which a cell degrades and recycles 
unnecessary or dysfunctional cellular components [82]. Autophagy is involved in 
promoting cell death and exacerbates myocardial dysfunction following severe 
ischemic stress. There is accumulating evidence that MSC-EXO reduce cell death 
by mediating autophagy. Xiao et al. determined that MSC-EXO reduced autophagic 
flux in infarcted hearts via exosomal transfer of miR-125b by interfering with p53/
Bnip3 signaling and protected cardiomyocytes against damage [83]. Liu et al. showed 
that miR-93-5p-enhanced ADSC-EXO had a greater cardioprotective effect by 
suppressing hypoxia-induced autophagy and inflammatory cytokine expression via 
targeting of Atg7 and Toll-like receptor 4 (TLR4), respectively [84]. Furthermore, Li 
et al. reported that exosomal miR-301 derived from MSCs protected against MI by 
inhibiting myocardial autophagy [85]. In addition, MSC-exosomal miRNAs exerted 
a cardioprotective effect in MI by attenuating cardiac fibrosis. Inflammation and 
subsequent fibrosis are important pathological reactions that result in scar formation 
post-MI. Human umbilical cord MSCs-EXO containing miR-29b have been shown 
to prevent cardiac fibrosis following MI, leading to a reduction in infarct size and 
improved cardiac function in a mouse model of MI [86]. Moreover, miR-671 carried 
by adipose-derived MSC-EXO has been proven to also reduce myocardial fibrosis and 
inflammation both in vitro and in vivo [77]. The roles of MSC-exosomal miRNA and 
the potential mechanism for MI treatment are summarized in Table 2.

3.2 Exosomal lncRNAs in MSC-EXO for MI treatment

LncRNAs are defined as RNA transcripts >200 nucleotides without protein-
coding potential. lncRNAs play important roles in regulating a variety of biologi-
cal processes. Recent studies have shown that they participate in the initiation 
and progression of MI through regulation of gene expression at the epigenetic, 
transcriptional and post-transcriptional levels [87]. Moreover, MSC-derived exo-
somal lncRNAs have been shown to have cardioprotective effects for MI. LncRNA 
KLF3-AS1 in human MSC-EXO ameliorated pyroptosis of cardiomyocytes in a rat 
model of MI via regulation of the miR-138-5p/Sirt1 axis [88]. A recent study has 
illustrated that hypoxia promoted MSCs to secret lncRNA-UCA1-enriched EXO 
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that had a cardioprotective effect via the lncRNA-UCA1/miR-873-5p/XIAP axis. 
Furthermore, exosomal lncRNA-UCA1 in human plasma may be considered a 
potential noninvasive biomarker for the diagnosis of AMI [89]. Similarly, Huang 
et al. showed that Atorvastatin pretreatment enhanced the therapeutic efficacy of 
MSC-EXO in a rat MI model via up-regulation of LncRNA H19 by promoting endo-
thelial cell function [90]. The roles of MSC-exosomal LncRNA and their potential 
mechanism in MI treatment are summarized in Table 3.

Model Sources 

of EXO

Related-

effectors

Biological effects Involved 

pathway

Ref.

MI mouse with LAD 

ligation

BM-MSCs miR-210 Angiogenesis Efna3 [65]

MI rat with LAD 

ligation

UC-MSCs miR-133-3p Angiogenesis

Anti-apoptosis

Anti-fibrosis

P-AKT [66]

MI rat with LAD 

ligation

BM-MSCs miR-221-3p Angiogenesis

Anti-apoptosis

PTEN/AKT 

pathway

[67]

MI mouse with LAD

ligation

BM-MSCs miR-132 Angiogenesis 

increase tube 

formation enhance 

neovascularization

RASA1 [18]

MI mouse with LAD 

ligation

BM-MSCs miR-125b Anti-apoptosis P53 and BAK1 [58]

MI rat with LAD 

ligation

AD-MSCs miR-146 Anti-apoptosis

Anti-inflammation

Anti-fibrosis

EGR1/TLR4/

NFκB

[71]

MI rat with LAD 

ligation

AD-MSCs miR-671 Anti-fibrosis

Anti-inflammation

TGFBR2/

Smad2

[72]

Vitro model BM-MSCs miR-153-3p Anti-apoptosis

Angiogenesis

ANGPT1-

VEGF/PI3k/

AKT/eNOS

[73]

MI mouse with LAD 

ligation

BM-MSCs miR-150-5p Anti-apoptosis Bax [74]

MI rat with LAD 

ligation

AD-MSCs miR-126 Anti-apoptosis

Anti-inflammation

Anti-fibrosis

Angiogenesis

_ [75]

MI rat with LAD 

ligation

BM-MSCs miR-486-5p Anti-apoptosis PTEN/PI3K/

AKT

[76]

MI mouse with LAD 

ligation

BM-MSCs miR-125b Decreasing 

autophagic flux

p53/Bnip3 [78]

MI rat with LAD 

ligation

BM-MSCs miR-301 Inhibiting 

myocardial 

autophagy

— [80]

MI mouse with LAD 

ligation

UC-MSCs miR-29b Anti-fibrosis — [81]

Table 2. 
MSC-exosomal miRNAs for MI treatment.
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3.3 Exosomal proteins in MSC-EXO for MI treatment

MSC-EXOs further elicit benefit by delivering their cargo of potentially therapeu-
tic proteins to recipient cells [91]. To date, nearly two thousand proteins in MSC-EXO 
have been identified [92–96]. Like miRNAs and lncRNAs, proteins in MSC-EXO 
have the potential to protect cardiomyocytes against injury following MI. Proteins in 
MSC-EXO whose role is basic cellular function, include common proteins, enzymes 
and signaling molecules [97]. One study suggested that hucMSC-EXO protected 
myocardial cells against apoptosis and promoted cell proliferation and angiogenesis 
by improving the expression of Bcl-2 family [98]. EXO secreted from CXCR4 overex-
pressing MSCs have been shown to promote cardiomyocyte survival and angiogenesis 
in ischemic hearts following MI via the AKT signaling pathway [99]. Deng et al. 
reported that EXO from AD-MSCs could ameliorate cardiac damage following MI 
by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization 
[100]. The roles of MSC-exosomal proteins and their potential mechanism for MI 
treatment are summarized in Table 4.

Taken together, although current knowledge is limited, it can be inferred that vari-
ous proteins carried by MSC-EXO protect ischemic cardiomyocytes through different 
mechanisms.

Model Sources 

of EXO

Related-

effectors

Biological effects Involved pathway Ref.

MI rats with 

LAD ligation

UC-MSCs Bcl-2 family, 

Ki67

Anti-fibrosis 

angiogenesis

— [98]

MI rat with 

LAD ligation

BM-MSCs DMBT1 Promotes 

angiogenesis

PI3K-AKT/

GSK3β/β-catenin/

VEGF

[99]

MI rat with 

LAD ligation

AD-MSCs S1P, SK1, 

S1PR1

Anti-apoptosis 

anti-fibrosis 

anti-inflammation 

promotes 

macrophage M2 

polarization

S1P/SK1/S1PR1 [100]

Table 4. 
MSC-Exosomal proteins for MI treatment.

Model Sources 

of EXO

Related-

effectors

Biological effects Involved 

pathway

Ref.

MI rats with 

LAD ligation

hMSCs LncRNA 

KLF3-AS1

Amelioration of 

pyroptosis

miR-138-5p/Sirt1 [83]

MI rats with 

LAD ligation

hMSCs LncRNA-UCA1 Anti-apoptosis miR-873-5p/

XIAP

[84]

MI rats with 

LAD ligation

BM-MSCs LncRNA H19 Anti-apoptosis

Angiogenesis

Anti-inflammation

Anti-fibrosis

miR-675, VEGF 

and ICAM-1

[85]

Table 3. 
MSC-exosomal LncRNAs for MI treatment.
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4.  Potential strategies to improve the therapeutic efficacy of  
MSC-EXO for MI

Although MSC-EXO-based therapy has shown promising results in MI, their 
therapeutic efficacy is heavily restricted by the low production and concentration of 
biological molecules released by EXO derived from MSCs under routine culture con-
ditions. The production and biological components of MSC-EXO vary depending on 
the different external stimuli surrounding MSCs and MSC status. Therefore, modify-
ing and optimizing exosomal content in MSC-EXO in vitro prior to transplantation to 
enhance their therapeutic efficacy for MI is vital. Over the past decades, several novel 
strategies, including altering culture conditions and pretreatment with pharmacologi-
cal compounds and molecules, have been explored to generate modified MSC-EXO 
with greater benefits for MI treatment [56, 101]. More importantly, genetic modifica-
tion of MSCs has had a great impact on the release of MSC-EXO, directly modulating 
their therapeutic efficacy. The influence of these factors on production and function 
of MSC-EXO will be discussed in the following sections. Different strategies to 
improve the therapeutic effects of MSC-EXO in MI are summarized in Figure 2.

4.1 MSC-EXO generated from different culture conditions

The status of MSCs is largely dependent on culture conditions. Changes to culture 
conditions may influence MSC-EXO content and its biological functions. As a key 
impact on MSC culture, oxygen concentration plays a critical role in the regulation 
of gene expression, exon splicing, and phenotype of MSCs [102]. Therefore, oxygen 
gradients control MSC functions and generate different biological functions of MSC-
EXO. MSCs survive under hypoxic conditions after transplantation into the ischemic 
heart and then release EXO to exert their benefit. Nonetheless MSCs are usually 
cultured under normoxic conditions in vitro. Therefore, the EXO released from MSCs 
under normoxic conditions in vitro and under hypoxic conditions in vivo carry dif-
ferent biological molecules with correspondingly different therapeutic effects. It has 
been reported that transplantation of MSCs under hypoxic conditions results in an 
enhanced therapeutic effect for MI [103, 104], indicating that hypoxic precondition-
ing may be a potential approach to prime MSC-EXO for MI treatment. Accumulating 

Figure 2. 
Different strategies to improve the therapeutic effects of MSC-EXO in MI.
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evidence shows that EXO from hypoxia-primed MSCs used to treat MI are superior to 
EXO from MSCs cultured under normoxic conditions [63, 105, 106]. Hypoxic pre-
conditioning can enrich some specific miRNAs in the MSC-EXO that protect against 
MI by promoting angiogenic potential, attenuating inflammation and ameliorating 
apoptosis of cardiomyocytes [101]. It has been documented that hypoxic pre-
conditioning of MSC-EXO elicits better therapeutic efficacy for MI by reducing the 
apoptosis of cardiomyocytes via upregulation of miR-210 that targets AIFM3 protein 
[75]. Zhang et al. showed that EXO isolated from hypoxic MSCs improved myocardial 
function in a rat model of myocardial ischemia-reperfusion injury by suppressing 
oxidative stress and the inflammatory response via delivery of miR-98-5p [107]. 
More importantly, EXO derived from MSCs stably overexpressing hypoxia inducible 
factor (HIF)-1α displayed an increased angiogenic capacity, partially due to the high 
level of Jagged1. This may have potential applications for MI treatment [108]. Indeed, 
transplantation of EXO collected from HIF-1α overexpressing MSCs improved 
heart function by promoting angiogenic formation in a rat model of MI [109]. Apart 
from hypoxic conditions, culture medium with different types of serum influence 
the characteristics of MSCs, modulating the efficacy of MSC-EXO-based therapies. 
Compared with normal serum, MSCs cultured with serum collected from the blood 
of mice with middle cerebral artery occlusion robustly demonstrated an upregulated 
level of miR-20a in their EXO [110]. Whether culturing MSCs with special serum can 
improve the efficacy of MSC-EXO for MI remains to be determined. Recently, it has 
been reported that the production of MSC-EXO can be augmented using a 3D porous 
scaffold structure instead of the traditional 2D culture in plastic plates, providing a 
novel strategy to optimize MSC-EXO for MI treatment [111]. Therefore, exploring 
suitable culture conditions for MSCs will not only improve the yield of EXO but also 
modify the therapeutic components of the EXO, ultimately enhancing their efficacy 
for MI treatment.

4.2  MSC-EXO generated following preconditioning with pharmacological 
compounds and biomolecules of MSCs

There is accumulating evidence that preconditioning with pharmacological 
agents and biomolecules robustly improves the therapeutic efficacy of MSCs in MI 
by enhancing MSC survival and paracrine effects [112–115]. These results prompted 
us to determine whether pharmacological preconditioning could be a novel approach 
to enhance the cardioprotective effects of MSC-EXO. Our group has shown that 
compared with MSC-EXO, EXO isolated from MSCs pretreated with hemin, a potent 
heme oxygenase-1 (HO-1) inducer, exhibited better cardioprotection for MI via 
inhibition of cardiomyocyte senescence by elevating the level of miR-183-5p [116]. 
Huang et al. demonstrated that EXO obtained from atorvastatin-pretreated MSCs 
had greatly enhanced therapeutic efficacy for MI treatment in terms of promoting 
angiogenesis and inhibiting inflammation [90]. In addition to pharmacological 
agents, preconditioning with specific biomolecules can contribute to the secretion 
of MSC-EXO. EXO derived from interferon-gamma (IFN-γ)-treated MSCs exhibited 
more potent cardioprotective function in a rat model of MI by increasing angiogen-
esis and inhibiting cardiomyocyte apoptosis through upregulation of miR-21 [117]. 
Interestingly, Xiao et al. found that compared with MSC-EXO, EXO derived from 
MSCs pretreated with ischemic rat heart extracts enriched with IL-22 promoted the 
angiogenic capacity of human umbilical vein endothelial cells, indicating a novel 
preconditioning approach to optimize MSC-EXO for MI treatment [99]. These reports 
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confirm that preconditioning with pharmacological compounds or biomolecules can 
alter the surrounding microenvironment of the culture conditions of MSCs and influ-
ence their paracrine effects, ultimately affecting the action of their derived EXO.

4.3 MSC-EXO isolated from genetically modified MSCs

Genetic modification of MSCs via knockdown or overexpression of some RNAs 
or proteins is another efficient approach to improve the therapeutic effect of MSC-
EXO. Our previous study showed that compared with MSC-EXO, administration 
of EXO secreted by MSCs transduced with macrophage migration inhibitory fac-
tor, a proinflammatory cytokine, exhibited a better therapeutic efficacy for MI 
by downregulating cardiomyocyte mitochondrial fragmentation, reactive oxygen 
species generation, and apoptosis [118]. A recent report revealed that EXO collected 
from stromal-derived factor 1-overexpressing MSCs intravenously administered 
in a mouse model displayed enhanced heart protection by inhibiting apoptosis and 
autophagy of myocardial cells and increasing angiogenesis by the regulating PI3K 
signaling pathway [119]. In another study, EXO from MSCs transduced with lentiviral 
CXCR4 promoted restoration of cardiac function in a rat model of MI by ameliorating 
cardiomyocyte apoptosis and increasing angiogenesis via upregulation of IGF-1α and 
p-AKT levels and downregulation of active caspase 3 level [120]. As discussed above, 
miRNAs are important biological components that play a pivotal role in the cardio-
protective effect of MSC-EXO in MI [121–123]. Therefore, overexpression of miRNAs 
in MSCs can enhance the efficacy of MSC-EXO for MI treatment. Direct injection of 
MSC-EXO with miR-183-5p overexpression has been shown to result in better cardiac 
function via suppression of apoptosis and oxidative stress of cardiomyocytes by 
targeting FOXO1 [124]. Administration of EXO derived from miR-129-5p-modified 
MSCs displayed enhanced cardiac function following MI in mice by downregulat-
ing apoptosis of cardiomyocytes and production of inflammatory cytokines via 
targeting of HMGB1 [125]. Moreover, EXO derived from miR-126-overexpressing 
adipose-MSCs demonstrated better beneficial effects by inhibiting cardiac fibrosis 
and inflammatory cytokine expression and increasing angiogenesis [80]. Thus, 
genetically modified MSC-EXO have been considered an effective means by which to 
enhance their cardioprotective effects in MI.

5. Limitations and challenges of MSC-EXO-based therapy for MI

Despite several significant advantages over MSCs, there remain some limitations 
and challenges to the clinical application of MSC-EXO for MI treatment. First, the 
rapid clearance of MSC-EXO from ischemic heart tissue after transplantation limits 
the beneficial effects for MI. An optimum delivery route for administration of MSC-
EXO is unavailable. Currently, intramyocardial transplantation is the most effica-
cious. Exploration of alternative approaches to optimize retention and engraftment of 
MSC-EXO in the ischemic heart is urgently needed. Second, although the biological 
components in MSC-EXO, including miRNAs, lncRNA, recombinant proteins, and 
cytokines, have been intensively investigated, the exact mechanisms underlying 
MSC-EXO-based therapy for MI require further investigation. Third, MSC-EXO are 
currently isolated mainly depending on their vesicle size. Different sizes of MSC-
EXO may contain different components with corresponding different therapeutic 
outcomes for MI. A more accurate isolation and purification method for MSC-EXO 
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should be adopted. Fourth, multiple harmful and unwanted biological components 
in MSC-EXO may restrict their efficiency. Several strategies to modify and remove 
unwanted components are under investigation. Finally, although classic high-speed 
centrifugation is the most common method used for MSC-EXO isolation, it is limited 
by the disadvantages of low production of EXO, high heterogeneity and non-scalabil-
ity. A scalable isolation protocol for mass production of homogenous MSC-EXO for 
clinical application is needed.

6. Conclusion

Over the past decades, administration of MSC-EXO has been shown to attenuate 
cardiac remodeling and improve heart function recovery following MI by inhibiting 
cardiomyocyte apoptosis, stimulating vascular angiogenesis, immunoregulation and 
rejuvenating cardiomyocyte senescence. Although the great potential of MSC-EXO 
therapy for heart function recovery has been clearly demonstrated, the therapeutic 
role of MSC-EXO in MI is extremely complex. Many issues remain to be carefully 
addressed and evaluated including the need for a high quality isolation protocol, 
delivery routes, and optimum EXO dose. In addition, potential risks must be carefully 
evaluated prior to translation into clinical trials. MSC-EXO-based therapy is still in its 
infancy and most experimental studies have been in a small animal model. The thera-
peutic efficacy of MSC-EXO should be evaluated in a porcine model or pre-clinical 
large animal model. This may provide further evidence to support clinical transla-
tion of MSC-EXO-based therapy to humans. Despite the unresolved issues, with the 
advanced development and technical breakthroughs in EXO research, it is hoped that 
clinical translation of MSC-EXO to promote cardiac regeneration and repair will soon 
be a reality for patients with MI.
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