140 research outputs found

    Siamese Object Tracking for Unmanned Aerial Vehicle: A Review and Comprehensive Analysis

    Full text link
    Unmanned aerial vehicle (UAV)-based visual object tracking has enabled a wide range of applications and attracted increasing attention in the field of intelligent transportation systems because of its versatility and effectiveness. As an emerging force in the revolutionary trend of deep learning, Siamese networks shine in UAV-based object tracking with their promising balance of accuracy, robustness, and speed. Thanks to the development of embedded processors and the gradual optimization of deep neural networks, Siamese trackers receive extensive research and realize preliminary combinations with UAVs. However, due to the UAV's limited onboard computational resources and the complex real-world circumstances, aerial tracking with Siamese networks still faces severe obstacles in many aspects. To further explore the deployment of Siamese networks in UAV-based tracking, this work presents a comprehensive review of leading-edge Siamese trackers, along with an exhaustive UAV-specific analysis based on the evaluation using a typical UAV onboard processor. Then, the onboard tests are conducted to validate the feasibility and efficacy of representative Siamese trackers in real-world UAV deployment. Furthermore, to better promote the development of the tracking community, this work analyzes the limitations of existing Siamese trackers and conducts additional experiments represented by low-illumination evaluations. In the end, prospects for the development of Siamese tracking for UAV-based intelligent transportation systems are deeply discussed. The unified framework of leading-edge Siamese trackers, i.e., code library, and the results of their experimental evaluations are available at https://github.com/vision4robotics/SiameseTracking4UAV

    Reproducibility and Discriminability of Brain Patterns of Semantic Categories Enhanced by Congruent Audiovisual Stimuli

    Get PDF
    One of the central questions in cognitive neuroscience is the precise neural representation, or brain pattern, associated with a semantic category. In this study, we explored the influence of audiovisual stimuli on the brain patterns of concepts or semantic categories through a functional magnetic resonance imaging (fMRI) experiment. We used a pattern search method to extract brain patterns corresponding to two semantic categories: “old people” and “young people.” These brain patterns were elicited by semantically congruent audiovisual, semantically incongruent audiovisual, unimodal visual, and unimodal auditory stimuli belonging to the two semantic categories. We calculated the reproducibility index, which measures the similarity of the patterns within the same category. We also decoded the semantic categories from these brain patterns. The decoding accuracy reflects the discriminability of the brain patterns between two categories. The results showed that both the reproducibility index of brain patterns and the decoding accuracy were significantly higher for semantically congruent audiovisual stimuli than for unimodal visual and unimodal auditory stimuli, while the semantically incongruent stimuli did not elicit brain patterns with significantly higher reproducibility index or decoding accuracy. Thus, the semantically congruent audiovisual stimuli enhanced the within-class reproducibility of brain patterns and the between-class discriminability of brain patterns, and facilitate neural representations of semantic categories or concepts. Furthermore, we analyzed the brain activity in superior temporal sulcus and middle temporal gyrus (STS/MTG). The strength of the fMRI signal and the reproducibility index were enhanced by the semantically congruent audiovisual stimuli. Our results support the use of the reproducibility index as a potential tool to supplement the fMRI signal amplitude for evaluating multimodal integration

    The Akebia Genus as a Novel Forest Crop: A Review of Its Genetic Resources, Nutritional Components, Biosynthesis, and Biological Studies

    Get PDF
    The genus Akebia belongs to the Lardizabalaceae family and comprises five species that are primarily distributed in East Asia. Plants of the Akebia genus comprise deciduous and semi-evergreen perennial twining vines that have been used in Chinese herbal medicine for at least 2000 years. The plants of this genus have the potential to form a novel forest crop with high nutritional and economic value because their fruit has a delicious sweet taste and rich nutrient components. In this study, we organized, analyzed, and evaluated the available published scientific literature on the botanical, ecological, and phytochemical characteristics of Akebia plants. Based on these studies, we briefly introduced botanical and ecological characteristics and focused on reviewing the development and utilization of wild genetic resources in the genus Akebia. We further explored the genus' rich nutritional components, such as triterpenes, flavonoids, polyphenols, polysaccharides, and fatty acids, and their potential use in food and health improvement applications. In addition, several papers describing advances in biotechnological research focusing on micropropagation, nutrient biosynthesis, and fruit ripeness were also included. This review provides comprehensive knowledge of the Akebia genus as a new forest crop for food and fruit utilization, and we also discuss future breeding and research prospects

    Enhanced bioelectroremediation of heavy metal contaminated groundwater through advancing a self-standing cathode

    Get PDF
    Hexavalent chromium (Cr(VI)) contamination in groundwater poses a substantial global challenge due to its high toxicity and extensive industrial applications. While the bioelectroremediation of Cr(VI) has attracted huge attention for its eco-friendly attributes, its practical application remains constrained by the hydrogeochemical conditions of groundwater (mainly pH), low electron transfer efficiency, limitations in electrocatalyst synthesis and electrode fabrication. In this study, we developed and investigated the use of N, S co-doped carbon nanofibers (CNFs) integrated on a graphite felt (GF) as a self-standing cathode (NS/CNF-GF) for the comprehensive reduction of Cr(VI) from real contaminated groundwater. The binder free cathode, prepared through electro-polymerization, was employed in a dual-chamber microbial fuel cell (MFC) for the treatment of Cr (VI)-laden real groundwater (40 mg/L) with a pH of 7.4. The electrochemical characterization of the prepared cathode revealed a distinct electroactive surface area, more wettability, facilitating enhanced adsorption and rapid electron transfer, resulting in a commendable Cr(VI) reduction rate of 0.83 mg/L/h. The MFC equipped with NS/CNF-GF demonstrated the lowest charge transfer resistance (Rct) and generated the highest power density (155 ± 0.3 mW/m2) compared to control systems. The favorable electrokinetics for modified cathode led to swift substrate consumption in the anode, releasing more electrons and protons, thereby accelerating Cr(VI) reduction to achieve the highest cathodic coulombic efficiency (C.Eca) of80 ± 1.3 %. A similar temporal trend observed between Cr(VI) removal efficiency, COD removal efficiency, and C.Eca, underscores the effective performance of the modified electrode. The reusability of the binder free cathode, exemption from catholyte preparation and the absence of pH regulation requirements highlighted the potential scalability and applicability of our findings on a larger scale

    Long-term trends and drivers of aerosol pH in eastern China

    Get PDF
    Aerosol acidity plays a key role in regulating the chemistry and toxicity of atmospheric aerosol particles. The trend of aerosol pH and its drivers is crucial in understanding the multiphase formation pathways of aerosols. Here, we reported the first trend analysis of aerosol pH from 2011 to 2019 in eastern China, calculated with the ISORROPIA model based on observed gas and aerosol compositions. The implementation of the Air Pollution Prevention and Control Action Plan led to −35.8 %, −37.6 %, −9.6 %, −81.0 % and 1.2 % changes of PM2.5, SO42-, NHx, non-volatile cations (NVCs) and NO3- in the Yangtze River Delta (YRD) region during this period. Different from the drastic changes of aerosol compositions due to the implementation of the Air Pollution Prevention and Control Action Plan, aerosol pH showed a minor change of −0.24 over the 9 years. Besides the multiphase buffer effect, the opposite effects from the changes of SO42- and non-volatile cations played key roles in determining this minor pH trend, contributing to a change of +0.38 and −0.35, respectively. Seasonal variations in aerosol pH were mainly driven by the temperature, while the diurnal variations were driven by both temperature and relative humidity. In the future, SO2, NOx and NH3 emissions are expected to be further reduced by 86.9 %, 74.9 % and 41.7 % in 2050 according to the best health effect pollution control scenario (SSP1-26-BHE). The corresponding aerosol pH in eastern China is estimated to increase by ∼0.19, resulting in 0.04 less NO3- and 0.12 less NH4+ partitioning ratios, which suggests that NH3 and NOx emission controls are effective in mitigating haze pollution in eastern China.</p

    Triptolide Inhibits the Proliferation of Prostate Cancer Cells and Down-Regulates SUMO-Specific Protease 1 Expression

    Get PDF
    Recently, traditional Chinese medicine and medicinal herbs have attracted more attentions worldwide for its anti-tumor efficacy. Celastrol and Triptolide, two active components extracted from the Chinese herb Tripterygium wilfordii Hook F (known as Lei Gong Teng or Thunder of God Vine), have shown anti-tumor effects. Celastrol was identified as a natural 26 s proteasome inhibitor which promotes cell apoptosis and inhibits tumor growth. The effect and mechanism of Triptolide on prostate cancer (PCa) is not well studied. Here we demonstrated that Triptolide, more potent than Celastrol, inhibited cell growth and induced cell death in LNCaP and PC-3 cell lines. Triptolide also significantly inhibited the xenografted PC-3 tumor growth in nude mice. Moreover, Triptolide induced PCa cell apoptosis through caspases activation and PARP cleavage. Unbalance between SUMOylation and deSUMOylation was reported to play an important role in PCa progression. SUMO-specific protease 1 (SENP1) was thought to be a potential marker and therapeutical target of PCa. Importantly, we observed that Triptolide down-regulated SENP1 expression in both mRNA and protein levels in dose-dependent and time-dependent manners, resulting in an enhanced cellular SUMOylation in PCa cells. Meanwhile, Triptolide decreased AR and c-Jun expression at similar manners, and suppressed AR and c-Jun transcription activity. Furthermore, knockdown or ectopic SENP1, c-Jun and AR expression in PCa cells inhibited the Triptolide anti-PCa effects. Taken together, our data suggest that Triptolide is a natural compound with potential therapeutic value for PCa. Its anti-tumor activity may be attributed to mechanisms involving down-regulation of SENP1 that restores SUMOylation and deSUMOyaltion balance and negative regulation of AR and c-Jun expression that inhibits the AR and c-Jun mediated transcription in PCa
    corecore